Spaces:
Build error
Build error
File size: 11,636 Bytes
f07f089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
#
# Nodes used as utilities and support for transforms etc.
# These often make up sets including both Nodes and ExprNodes
# so it is convenient to have them in a separate module.
#
from __future__ import absolute_import
from . import Nodes
from . import ExprNodes
from .Nodes import Node
from .ExprNodes import AtomicExprNode
from .PyrexTypes import c_ptr_type
class TempHandle(object):
# THIS IS DEPRECATED, USE LetRefNode instead
temp = None
needs_xdecref = False
def __init__(self, type, needs_cleanup=None):
self.type = type
if needs_cleanup is None:
self.needs_cleanup = type.is_pyobject
else:
self.needs_cleanup = needs_cleanup
def ref(self, pos):
return TempRefNode(pos, handle=self, type=self.type)
class TempRefNode(AtomicExprNode):
# THIS IS DEPRECATED, USE LetRefNode instead
# handle TempHandle
def analyse_types(self, env):
assert self.type == self.handle.type
return self
def analyse_target_types(self, env):
assert self.type == self.handle.type
return self
def analyse_target_declaration(self, env):
pass
def calculate_result_code(self):
result = self.handle.temp
if result is None: result = "<error>" # might be called and overwritten
return result
def generate_result_code(self, code):
pass
def generate_assignment_code(self, rhs, code, overloaded_assignment=False):
if self.type.is_pyobject:
rhs.make_owned_reference(code)
# TODO: analyse control flow to see if this is necessary
code.put_xdecref(self.result(), self.ctype())
code.putln('%s = %s;' % (
self.result(),
rhs.result() if overloaded_assignment else rhs.result_as(self.ctype()),
))
rhs.generate_post_assignment_code(code)
rhs.free_temps(code)
class TempsBlockNode(Node):
# THIS IS DEPRECATED, USE LetNode instead
"""
Creates a block which allocates temporary variables.
This is used by transforms to output constructs that need
to make use of a temporary variable. Simply pass the types
of the needed temporaries to the constructor.
The variables can be referred to using a TempRefNode
(which can be constructed by calling get_ref_node).
"""
# temps [TempHandle]
# body StatNode
child_attrs = ["body"]
def generate_execution_code(self, code):
for handle in self.temps:
handle.temp = code.funcstate.allocate_temp(
handle.type, manage_ref=handle.needs_cleanup)
self.body.generate_execution_code(code)
for handle in self.temps:
if handle.needs_cleanup:
if handle.needs_xdecref:
code.put_xdecref_clear(handle.temp, handle.type)
else:
code.put_decref_clear(handle.temp, handle.type)
code.funcstate.release_temp(handle.temp)
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
def analyse_expressions(self, env):
self.body = self.body.analyse_expressions(env)
return self
def generate_function_definitions(self, env, code):
self.body.generate_function_definitions(env, code)
def annotate(self, code):
self.body.annotate(code)
class ResultRefNode(AtomicExprNode):
# A reference to the result of an expression. The result_code
# must be set externally (usually a temp name).
subexprs = []
lhs_of_first_assignment = False
def __init__(self, expression=None, pos=None, type=None, may_hold_none=True, is_temp=False):
self.expression = expression
self.pos = None
self.may_hold_none = may_hold_none
if expression is not None:
self.pos = expression.pos
if hasattr(expression, "type"):
self.type = expression.type
if pos is not None:
self.pos = pos
if type is not None:
self.type = type
if is_temp:
self.is_temp = True
assert self.pos is not None
def clone_node(self):
# nothing to do here
return self
def type_dependencies(self, env):
if self.expression:
return self.expression.type_dependencies(env)
else:
return ()
def update_expression(self, expression):
self.expression = expression
if hasattr(expression, "type"):
self.type = expression.type
def analyse_types(self, env):
if self.expression is not None:
if not self.expression.type:
self.expression = self.expression.analyse_types(env)
self.type = self.expression.type
return self
def infer_type(self, env):
if self.type is not None:
return self.type
if self.expression is not None:
if self.expression.type is not None:
return self.expression.type
return self.expression.infer_type(env)
assert False, "cannot infer type of ResultRefNode"
def may_be_none(self):
if not self.type.is_pyobject:
return False
return self.may_hold_none
def _DISABLED_may_be_none(self):
# not sure if this is safe - the expression may not be the
# only value that gets assigned
if self.expression is not None:
return self.expression.may_be_none()
if self.type is not None:
return self.type.is_pyobject
return True # play safe
def is_simple(self):
return True
def result(self):
try:
return self.result_code
except AttributeError:
if self.expression is not None:
self.result_code = self.expression.result()
return self.result_code
def generate_evaluation_code(self, code):
pass
def generate_result_code(self, code):
pass
def generate_disposal_code(self, code):
pass
def generate_assignment_code(self, rhs, code, overloaded_assignment=False):
if self.type.is_pyobject:
rhs.make_owned_reference(code)
if not self.lhs_of_first_assignment:
code.put_decref(self.result(), self.ctype())
code.putln('%s = %s;' % (
self.result(),
rhs.result() if overloaded_assignment else rhs.result_as(self.ctype()),
))
rhs.generate_post_assignment_code(code)
rhs.free_temps(code)
def allocate_temps(self, env):
pass
def release_temp(self, env):
pass
def free_temps(self, code):
pass
class LetNodeMixin:
def set_temp_expr(self, lazy_temp):
self.lazy_temp = lazy_temp
self.temp_expression = lazy_temp.expression
def setup_temp_expr(self, code):
self.temp_expression.generate_evaluation_code(code)
self.temp_type = self.temp_expression.type
if self.temp_type.is_array:
self.temp_type = c_ptr_type(self.temp_type.base_type)
self._result_in_temp = self.temp_expression.result_in_temp()
if self._result_in_temp:
self.temp = self.temp_expression.result()
else:
self.temp_expression.make_owned_reference(code)
self.temp = code.funcstate.allocate_temp(
self.temp_type, manage_ref=True)
code.putln("%s = %s;" % (self.temp, self.temp_expression.result()))
self.temp_expression.generate_disposal_code(code)
self.temp_expression.free_temps(code)
self.lazy_temp.result_code = self.temp
def teardown_temp_expr(self, code):
if self._result_in_temp:
self.temp_expression.generate_disposal_code(code)
self.temp_expression.free_temps(code)
else:
if self.temp_type.is_pyobject:
code.put_decref_clear(self.temp, self.temp_type)
code.funcstate.release_temp(self.temp)
class EvalWithTempExprNode(ExprNodes.ExprNode, LetNodeMixin):
# A wrapper around a subexpression that moves an expression into a
# temp variable and provides it to the subexpression.
subexprs = ['temp_expression', 'subexpression']
def __init__(self, lazy_temp, subexpression):
self.set_temp_expr(lazy_temp)
self.pos = subexpression.pos
self.subexpression = subexpression
# if called after type analysis, we already know the type here
self.type = self.subexpression.type
def infer_type(self, env):
return self.subexpression.infer_type(env)
def may_be_none(self):
return self.subexpression.may_be_none()
def result(self):
return self.subexpression.result()
def analyse_types(self, env):
self.temp_expression = self.temp_expression.analyse_types(env)
self.lazy_temp.update_expression(self.temp_expression) # overwrite in case it changed
self.subexpression = self.subexpression.analyse_types(env)
self.type = self.subexpression.type
return self
def free_subexpr_temps(self, code):
self.subexpression.free_temps(code)
def generate_subexpr_disposal_code(self, code):
self.subexpression.generate_disposal_code(code)
def generate_evaluation_code(self, code):
self.setup_temp_expr(code)
self.subexpression.generate_evaluation_code(code)
self.teardown_temp_expr(code)
LetRefNode = ResultRefNode
class LetNode(Nodes.StatNode, LetNodeMixin):
# Implements a local temporary variable scope. Imagine this
# syntax being present:
# let temp = VALUE:
# BLOCK (can modify temp)
# if temp is an object, decref
#
# Usually used after analysis phase, but forwards analysis methods
# to its children
child_attrs = ['temp_expression', 'body']
def __init__(self, lazy_temp, body):
self.set_temp_expr(lazy_temp)
self.pos = body.pos
self.body = body
def analyse_declarations(self, env):
self.temp_expression.analyse_declarations(env)
self.body.analyse_declarations(env)
def analyse_expressions(self, env):
self.temp_expression = self.temp_expression.analyse_expressions(env)
self.body = self.body.analyse_expressions(env)
return self
def generate_execution_code(self, code):
self.setup_temp_expr(code)
self.body.generate_execution_code(code)
self.teardown_temp_expr(code)
def generate_function_definitions(self, env, code):
self.temp_expression.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
class TempResultFromStatNode(ExprNodes.ExprNode):
# An ExprNode wrapper around a StatNode that executes the StatNode
# body. Requires a ResultRefNode that it sets up to refer to its
# own temp result. The StatNode must assign a value to the result
# node, which then becomes the result of this node.
subexprs = []
child_attrs = ['body']
def __init__(self, result_ref, body):
self.result_ref = result_ref
self.pos = body.pos
self.body = body
self.type = result_ref.type
self.is_temp = 1
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
def analyse_types(self, env):
self.body = self.body.analyse_expressions(env)
return self
def generate_result_code(self, code):
self.result_ref.result_code = self.result()
self.body.generate_execution_code(code)
|