File size: 11,324 Bytes
47af768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch.nn as nn
import torch
from pathlib import Path
import numpy as np
from itertools import islice
import torchvision.transforms as transforms
import cv2
import sys
import torchvision.transforms as T
from collections import OrderedDict, namedtuple
import gdown
from os.path import exists as file_exists

from yolov5.utils.general import LOGGER, check_version, check_requirements
from trackers.strong_sort.deep.reid_model_factory import (show_downloadeable_models, get_model_url, get_model_name,
                                                          download_url, load_pretrained_weights)
from trackers.strong_sort.deep.models import build_model


def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
    # Check file(s) for acceptable suffix
    if file and suffix:
        if isinstance(suffix, str):
            suffix = [suffix]
        for f in file if isinstance(file, (list, tuple)) else [file]:
            s = Path(f).suffix.lower()  # file suffix
            if len(s):
                assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"


class ReIDDetectMultiBackend(nn.Module):
    # ReID models MultiBackend class for python inference on various backends
    def __init__(self, weights='osnet_x0_25_msmt17.pt', device=torch.device('cpu'), fp16=False):
        super().__init__()

        w = weights[0] if isinstance(weights, list) else weights
        self.pt, self.jit, self.onnx, self.xml, self.engine, self.coreml, self.saved_model, \
            self.pb, self.tflite, self.edgetpu, self.tfjs, self.paddle = self.model_type(w)  # get backend
        self.fp16 = fp16
        self.fp16 &= self.pt or self.jit or self.engine  # FP16

        # Build transform functions
        self.device = device
        self.image_size=(256, 128)
        self.pixel_mean=[0.485, 0.456, 0.406]
        self.pixel_std=[0.229, 0.224, 0.225]
        self.transforms = []
        self.transforms += [T.Resize(self.image_size)]
        self.transforms += [T.ToTensor()]
        self.transforms += [T.Normalize(mean=self.pixel_mean, std=self.pixel_std)]
        self.preprocess = T.Compose(self.transforms)
        self.to_pil = T.ToPILImage()

        model_name = get_model_name(w)

        if w.suffix == '.pt':
            model_url = get_model_url(w)
            if not file_exists(w) and model_url is not None:
                gdown.download(model_url, str(w), quiet=False)
            elif file_exists(w):
                pass
            else:
                print(f'No URL associated to the chosen StrongSORT weights ({w}). Choose between:')
                show_downloadeable_models()
                exit()

        # Build model
        self.model = build_model(
            model_name,
            num_classes=1,
            pretrained=not (w and w.is_file()),
            use_gpu=device
        )

        if self.pt:  # PyTorch
            # populate model arch with weights
            if w and w.is_file() and w.suffix == '.pt':
                load_pretrained_weights(self.model, w)
                
            self.model.to(device).eval()
            self.model.half() if self.fp16 else  self.model.float()
        elif self.jit:
            LOGGER.info(f'Loading {w} for TorchScript inference...')
            self.model = torch.jit.load(w)
            self.model.half() if self.fp16 else self.model.float()
        elif self.onnx:  # ONNX Runtime
            LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
            cuda = torch.cuda.is_available() and device.type != 'cpu'
            #check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
            import onnxruntime
            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
            self.session = onnxruntime.InferenceSession(str(w), providers=providers)
        elif self.engine:  # TensorRT
            LOGGER.info(f'Loading {w} for TensorRT inference...')
            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
            check_version(trt.__version__, '7.0.0', hard=True)  # require tensorrt>=7.0.0
            if device.type == 'cpu':
                device = torch.device('cuda:0')
            Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
            logger = trt.Logger(trt.Logger.INFO)
            with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
                self.model_ = runtime.deserialize_cuda_engine(f.read())
            self.context = self.model_.create_execution_context()
            self.bindings = OrderedDict()
            self.fp16 = False  # default updated below
            dynamic = False
            for index in range(self.model_.num_bindings):
                name = self.model_.get_binding_name(index)
                dtype = trt.nptype(self.model_.get_binding_dtype(index))
                if self.model_.binding_is_input(index):
                    if -1 in tuple(self.model_.get_binding_shape(index)):  # dynamic
                        dynamic = True
                        self.context.set_binding_shape(index, tuple(self.model_.get_profile_shape(0, index)[2]))
                    if dtype == np.float16:
                        self.fp16 = True
                shape = tuple(self.context.get_binding_shape(index))
                im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
                self.bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
            self.binding_addrs = OrderedDict((n, d.ptr) for n, d in self.bindings.items())
            batch_size = self.bindings['images'].shape[0]  # if dynamic, this is instead max batch size
        elif self.xml:  # OpenVINO
            LOGGER.info(f'Loading {w} for OpenVINO inference...')
            check_requirements(('openvino',))  # requires openvino-dev: https://pypi.org/project/openvino-dev/
            from openvino.runtime import Core, Layout, get_batch
            ie = Core()
            if not Path(w).is_file():  # if not *.xml
                w = next(Path(w).glob('*.xml'))  # get *.xml file from *_openvino_model dir
            network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
            if network.get_parameters()[0].get_layout().empty:
                network.get_parameters()[0].set_layout(Layout("NCWH"))
            batch_dim = get_batch(network)
            if batch_dim.is_static:
                batch_size = batch_dim.get_length()
            self.executable_network = ie.compile_model(network, device_name="CPU")  # device_name="MYRIAD" for Intel NCS2
            self.output_layer = next(iter(self.executable_network.outputs))
        
        elif self.tflite:
            LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
            try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
                from tflite_runtime.interpreter import Interpreter, load_delegate
            except ImportError:
                import tensorflow as tf
                Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
            self.interpreter = tf.lite.Interpreter(model_path=w)
            self.interpreter.allocate_tensors()
            # Get input and output tensors.
            self.input_details = self.interpreter.get_input_details()
            self.output_details = self.interpreter.get_output_details()
            
            # Test model on random input data.
            input_data = np.array(np.random.random_sample((1,256,128,3)), dtype=np.float32)
            self.interpreter.set_tensor(self.input_details[0]['index'], input_data)
            
            self.interpreter.invoke()

            # The function `get_tensor()` returns a copy of the tensor data.
            output_data = self.interpreter.get_tensor(self.output_details[0]['index'])
        else:
            print('This model framework is not supported yet!')
            exit()
        
        
    @staticmethod
    def model_type(p='path/to/model.pt'):
        # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
        from export import export_formats
        sf = list(export_formats().Suffix)  # export suffixes
        check_suffix(p, sf)  # checks
        types = [s in Path(p).name for s in sf]
        types[8] &= not types[9]  # tflite &= not edgetpu
        return types

    def _preprocess(self, im_batch):

        images = []
        for element in im_batch:
            image = self.to_pil(element)
            image = self.preprocess(image)
            images.append(image)

        images = torch.stack(images, dim=0)
        images = images.to(self.device)

        return images
    
    
    def forward(self, im_batch):
        
        # preprocess batch
        im_batch = self._preprocess(im_batch)

        # batch to half
        if self.fp16 and im_batch.dtype != torch.float16:
           im_batch = im_batch.half()

        # batch processing
        features = []
        if self.pt:
            features = self.model(im_batch)
        elif self.jit:  # TorchScript
            features = self.model(im_batch)
        elif self.onnx:  # ONNX Runtime
            im_batch = im_batch.cpu().numpy()  # torch to numpy
            features = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im_batch})[0]
        elif self.engine:  # TensorRT
            if True and im_batch.shape != self.bindings['images'].shape:
                i_in, i_out = (self.model_.get_binding_index(x) for x in ('images', 'output'))
                self.context.set_binding_shape(i_in, im_batch.shape)  # reshape if dynamic
                self.bindings['images'] = self.bindings['images']._replace(shape=im_batch.shape)
                self.bindings['output'].data.resize_(tuple(self.context.get_binding_shape(i_out)))
            s = self.bindings['images'].shape
            assert im_batch.shape == s, f"input size {im_batch.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
            self.binding_addrs['images'] = int(im_batch.data_ptr())
            self.context.execute_v2(list(self.binding_addrs.values()))
            features = self.bindings['output'].data
        elif self.xml:  # OpenVINO
            im_batch = im_batch.cpu().numpy()  # FP32
            features = self.executable_network([im_batch])[self.output_layer]
        else:
            print('Framework not supported at the moment, we are working on it...')
            exit()

        if isinstance(features, (list, tuple)):
            return self.from_numpy(features[0]) if len(features) == 1 else [self.from_numpy(x) for x in features]
        else:
            return self.from_numpy(features)

    def from_numpy(self, x):
        return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x

    def warmup(self, imgsz=[(256, 128, 3)]):
        # Warmup model by running inference once
        warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
        if any(warmup_types) and self.device.type != 'cpu':
            im = [np.empty(*imgsz).astype(np.uint8)]  # input
            for _ in range(2 if self.jit else 1):  #
                self.forward(im)  # warmup