Spaces:
Build error
Build error
File size: 30,009 Bytes
f07f089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 |
from __future__ import absolute_import
from .Errors import CompileError, error
from . import ExprNodes
from .ExprNodes import IntNode, NameNode, AttributeNode
from . import Options
from .Code import UtilityCode, TempitaUtilityCode
from .UtilityCode import CythonUtilityCode
from . import Buffer
from . import PyrexTypes
from . import ModuleNode
START_ERR = "Start must not be given."
STOP_ERR = "Axis specification only allowed in the 'step' slot."
STEP_ERR = "Step must be omitted, 1, or a valid specifier."
BOTH_CF_ERR = "Cannot specify an array that is both C and Fortran contiguous."
INVALID_ERR = "Invalid axis specification."
NOT_CIMPORTED_ERR = "Variable was not cimported from cython.view"
EXPR_ERR = "no expressions allowed in axis spec, only names and literals."
CF_ERR = "Invalid axis specification for a C/Fortran contiguous array."
ERR_UNINITIALIZED = ("Cannot check if memoryview %s is initialized without the "
"GIL, consider using initializedcheck(False)")
def concat_flags(*flags):
return "(%s)" % "|".join(flags)
format_flag = "PyBUF_FORMAT"
memview_c_contiguous = "(PyBUF_C_CONTIGUOUS | PyBUF_FORMAT)"
memview_f_contiguous = "(PyBUF_F_CONTIGUOUS | PyBUF_FORMAT)"
memview_any_contiguous = "(PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT)"
memview_full_access = "PyBUF_FULL_RO"
#memview_strided_access = "PyBUF_STRIDED_RO"
memview_strided_access = "PyBUF_RECORDS_RO"
MEMVIEW_DIRECT = '__Pyx_MEMVIEW_DIRECT'
MEMVIEW_PTR = '__Pyx_MEMVIEW_PTR'
MEMVIEW_FULL = '__Pyx_MEMVIEW_FULL'
MEMVIEW_CONTIG = '__Pyx_MEMVIEW_CONTIG'
MEMVIEW_STRIDED= '__Pyx_MEMVIEW_STRIDED'
MEMVIEW_FOLLOW = '__Pyx_MEMVIEW_FOLLOW'
_spec_to_const = {
'direct' : MEMVIEW_DIRECT,
'ptr' : MEMVIEW_PTR,
'full' : MEMVIEW_FULL,
'contig' : MEMVIEW_CONTIG,
'strided': MEMVIEW_STRIDED,
'follow' : MEMVIEW_FOLLOW,
}
_spec_to_abbrev = {
'direct' : 'd',
'ptr' : 'p',
'full' : 'f',
'contig' : 'c',
'strided' : 's',
'follow' : '_',
}
memslice_entry_init = "{ 0, 0, { 0 }, { 0 }, { 0 } }"
memview_name = u'memoryview'
memview_typeptr_cname = '__pyx_memoryview_type'
memview_objstruct_cname = '__pyx_memoryview_obj'
memviewslice_cname = u'__Pyx_memviewslice'
def put_init_entry(mv_cname, code):
code.putln("%s.data = NULL;" % mv_cname)
code.putln("%s.memview = NULL;" % mv_cname)
#def axes_to_str(axes):
# return "".join([access[0].upper()+packing[0] for (access, packing) in axes])
def put_acquire_memoryviewslice(lhs_cname, lhs_type, lhs_pos, rhs, code,
have_gil=False, first_assignment=True):
"We can avoid decreffing the lhs if we know it is the first assignment"
assert rhs.type.is_memoryviewslice
pretty_rhs = rhs.result_in_temp() or rhs.is_simple()
if pretty_rhs:
rhstmp = rhs.result()
else:
rhstmp = code.funcstate.allocate_temp(lhs_type, manage_ref=False)
code.putln("%s = %s;" % (rhstmp, rhs.result_as(lhs_type)))
# Allow uninitialized assignment
#code.putln(code.put_error_if_unbound(lhs_pos, rhs.entry))
put_assign_to_memviewslice(lhs_cname, rhs, rhstmp, lhs_type, code,
have_gil=have_gil, first_assignment=first_assignment)
if not pretty_rhs:
code.funcstate.release_temp(rhstmp)
def put_assign_to_memviewslice(lhs_cname, rhs, rhs_cname, memviewslicetype, code,
have_gil=False, first_assignment=False):
if not first_assignment:
code.put_xdecref_memoryviewslice(lhs_cname, have_gil=have_gil)
if not rhs.result_in_temp():
rhs.make_owned_memoryviewslice(code)
code.putln("%s = %s;" % (lhs_cname, rhs_cname))
def get_buf_flags(specs):
is_c_contig, is_f_contig = is_cf_contig(specs)
if is_c_contig:
return memview_c_contiguous
elif is_f_contig:
return memview_f_contiguous
access, packing = zip(*specs)
if 'full' in access or 'ptr' in access:
return memview_full_access
else:
return memview_strided_access
def insert_newaxes(memoryviewtype, n):
axes = [('direct', 'strided')] * n
axes.extend(memoryviewtype.axes)
return PyrexTypes.MemoryViewSliceType(memoryviewtype.dtype, axes)
def broadcast_types(src, dst):
n = abs(src.ndim - dst.ndim)
if src.ndim < dst.ndim:
return insert_newaxes(src, n), dst
else:
return src, insert_newaxes(dst, n)
def valid_memslice_dtype(dtype, i=0):
"""
Return whether type dtype can be used as the base type of a
memoryview slice.
We support structs, numeric types and objects
"""
if dtype.is_complex and dtype.real_type.is_int:
return False
if dtype is PyrexTypes.c_bint_type:
return False
if dtype.is_struct and dtype.kind == 'struct':
for member in dtype.scope.var_entries:
if not valid_memslice_dtype(member.type):
return False
return True
return (
dtype.is_error or
# Pointers are not valid (yet)
# (dtype.is_ptr and valid_memslice_dtype(dtype.base_type)) or
(dtype.is_array and i < 8 and
valid_memslice_dtype(dtype.base_type, i + 1)) or
dtype.is_numeric or
dtype.is_pyobject or
dtype.is_fused or # accept this as it will be replaced by specializations later
(dtype.is_typedef and valid_memslice_dtype(dtype.typedef_base_type))
)
class MemoryViewSliceBufferEntry(Buffer.BufferEntry):
"""
May be used during code generation time to be queried for
shape/strides/suboffsets attributes, or to perform indexing or slicing.
"""
def __init__(self, entry):
self.entry = entry
self.type = entry.type
self.cname = entry.cname
self.buf_ptr = "%s.data" % self.cname
dtype = self.entry.type.dtype
self.buf_ptr_type = PyrexTypes.CPtrType(dtype)
self.init_attributes()
def get_buf_suboffsetvars(self):
return self._for_all_ndim("%s.suboffsets[%d]")
def get_buf_stridevars(self):
return self._for_all_ndim("%s.strides[%d]")
def get_buf_shapevars(self):
return self._for_all_ndim("%s.shape[%d]")
def generate_buffer_lookup_code(self, code, index_cnames):
axes = [(dim, index_cnames[dim], access, packing)
for dim, (access, packing) in enumerate(self.type.axes)]
return self._generate_buffer_lookup_code(code, axes)
def _generate_buffer_lookup_code(self, code, axes, cast_result=True):
"""
Generate a single expression that indexes the memory view slice
in each dimension.
"""
bufp = self.buf_ptr
type_decl = self.type.dtype.empty_declaration_code()
for dim, index, access, packing in axes:
shape = "%s.shape[%d]" % (self.cname, dim)
stride = "%s.strides[%d]" % (self.cname, dim)
suboffset = "%s.suboffsets[%d]" % (self.cname, dim)
flag = get_memoryview_flag(access, packing)
if flag in ("generic", "generic_contiguous"):
# Note: we cannot do cast tricks to avoid stride multiplication
# for generic_contiguous, as we may have to do (dtype *)
# or (dtype **) arithmetic, we won't know which unless
# we check suboffsets
code.globalstate.use_utility_code(memviewslice_index_helpers)
bufp = ('__pyx_memviewslice_index_full(%s, %s, %s, %s)' %
(bufp, index, stride, suboffset))
elif flag == "indirect":
bufp = "(%s + %s * %s)" % (bufp, index, stride)
bufp = ("(*((char **) %s) + %s)" % (bufp, suboffset))
elif flag == "indirect_contiguous":
# Note: we do char ** arithmetic
bufp = "(*((char **) %s + %s) + %s)" % (bufp, index, suboffset)
elif flag == "strided":
bufp = "(%s + %s * %s)" % (bufp, index, stride)
else:
assert flag == 'contiguous', flag
bufp = '((char *) (((%s *) %s) + %s))' % (type_decl, bufp, index)
bufp = '( /* dim=%d */ %s )' % (dim, bufp)
if cast_result:
return "((%s *) %s)" % (type_decl, bufp)
return bufp
def generate_buffer_slice_code(self, code, indices, dst, have_gil,
have_slices, directives):
"""
Slice a memoryviewslice.
indices - list of index nodes. If not a SliceNode, or NoneNode,
then it must be coercible to Py_ssize_t
Simply call __pyx_memoryview_slice_memviewslice with the right
arguments, unless the dimension is omitted or a bare ':', in which
case we copy over the shape/strides/suboffsets attributes directly
for that dimension.
"""
src = self.cname
code.putln("%(dst)s.data = %(src)s.data;" % locals())
code.putln("%(dst)s.memview = %(src)s.memview;" % locals())
code.put_incref_memoryviewslice(dst)
all_dimensions_direct = all(access == 'direct' for access, packing in self.type.axes)
suboffset_dim_temp = []
def get_suboffset_dim():
# create global temp variable at request
if not suboffset_dim_temp:
suboffset_dim = code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False)
code.putln("%s = -1;" % suboffset_dim)
suboffset_dim_temp.append(suboffset_dim)
return suboffset_dim_temp[0]
dim = -1
new_ndim = 0
for index in indices:
if index.is_none:
# newaxis
for attrib, value in [('shape', 1), ('strides', 0), ('suboffsets', -1)]:
code.putln("%s.%s[%d] = %d;" % (dst, attrib, new_ndim, value))
new_ndim += 1
continue
dim += 1
access, packing = self.type.axes[dim]
if isinstance(index, ExprNodes.SliceNode):
# slice, unspecified dimension, or part of ellipsis
d = dict(locals())
for s in "start stop step".split():
idx = getattr(index, s)
have_idx = d['have_' + s] = not idx.is_none
d[s] = idx.result() if have_idx else "0"
if not (d['have_start'] or d['have_stop'] or d['have_step']):
# full slice (:), simply copy over the extent, stride
# and suboffset. Also update suboffset_dim if needed
d['access'] = access
util_name = "SimpleSlice"
else:
util_name = "ToughSlice"
d['error_goto'] = code.error_goto(index.pos)
new_ndim += 1
else:
# normal index
idx = index.result()
indirect = access != 'direct'
if indirect:
generic = access == 'full'
if new_ndim != 0:
return error(index.pos,
"All preceding dimensions must be "
"indexed and not sliced")
d = dict(
locals(),
wraparound=int(directives['wraparound']),
boundscheck=int(directives['boundscheck']),
)
if d['boundscheck']:
d['error_goto'] = code.error_goto(index.pos)
util_name = "SliceIndex"
_, impl = TempitaUtilityCode.load_as_string(util_name, "MemoryView_C.c", context=d)
code.put(impl)
if suboffset_dim_temp:
code.funcstate.release_temp(suboffset_dim_temp[0])
def empty_slice(pos):
none = ExprNodes.NoneNode(pos)
return ExprNodes.SliceNode(pos, start=none,
stop=none, step=none)
def unellipsify(indices, ndim):
result = []
seen_ellipsis = False
have_slices = False
newaxes = [newaxis for newaxis in indices if newaxis.is_none]
n_indices = len(indices) - len(newaxes)
for index in indices:
if isinstance(index, ExprNodes.EllipsisNode):
have_slices = True
full_slice = empty_slice(index.pos)
if seen_ellipsis:
result.append(full_slice)
else:
nslices = ndim - n_indices + 1
result.extend([full_slice] * nslices)
seen_ellipsis = True
else:
have_slices = have_slices or index.is_slice or index.is_none
result.append(index)
result_length = len(result) - len(newaxes)
if result_length < ndim:
have_slices = True
nslices = ndim - result_length
result.extend([empty_slice(indices[-1].pos)] * nslices)
return have_slices, result, newaxes
def get_memoryview_flag(access, packing):
if access == 'full' and packing in ('strided', 'follow'):
return 'generic'
elif access == 'full' and packing == 'contig':
return 'generic_contiguous'
elif access == 'ptr' and packing in ('strided', 'follow'):
return 'indirect'
elif access == 'ptr' and packing == 'contig':
return 'indirect_contiguous'
elif access == 'direct' and packing in ('strided', 'follow'):
return 'strided'
else:
assert (access, packing) == ('direct', 'contig'), (access, packing)
return 'contiguous'
def get_is_contig_func_name(contig_type, ndim):
assert contig_type in ('C', 'F')
return "__pyx_memviewslice_is_contig_%s%d" % (contig_type, ndim)
def get_is_contig_utility(contig_type, ndim):
assert contig_type in ('C', 'F')
C = dict(context, ndim=ndim, contig_type=contig_type)
utility = load_memview_c_utility("MemviewSliceCheckContig", C, requires=[is_contig_utility])
return utility
def slice_iter(slice_type, slice_result, ndim, code):
if slice_type.is_c_contig or slice_type.is_f_contig:
return ContigSliceIter(slice_type, slice_result, ndim, code)
else:
return StridedSliceIter(slice_type, slice_result, ndim, code)
class SliceIter(object):
def __init__(self, slice_type, slice_result, ndim, code):
self.slice_type = slice_type
self.slice_result = slice_result
self.code = code
self.ndim = ndim
class ContigSliceIter(SliceIter):
def start_loops(self):
code = self.code
code.begin_block()
type_decl = self.slice_type.dtype.empty_declaration_code()
total_size = ' * '.join("%s.shape[%d]" % (self.slice_result, i)
for i in range(self.ndim))
code.putln("Py_ssize_t __pyx_temp_extent = %s;" % total_size)
code.putln("Py_ssize_t __pyx_temp_idx;")
code.putln("%s *__pyx_temp_pointer = (%s *) %s.data;" % (
type_decl, type_decl, self.slice_result))
code.putln("for (__pyx_temp_idx = 0; "
"__pyx_temp_idx < __pyx_temp_extent; "
"__pyx_temp_idx++) {")
return "__pyx_temp_pointer"
def end_loops(self):
self.code.putln("__pyx_temp_pointer += 1;")
self.code.putln("}")
self.code.end_block()
class StridedSliceIter(SliceIter):
def start_loops(self):
code = self.code
code.begin_block()
for i in range(self.ndim):
t = i, self.slice_result, i
code.putln("Py_ssize_t __pyx_temp_extent_%d = %s.shape[%d];" % t)
code.putln("Py_ssize_t __pyx_temp_stride_%d = %s.strides[%d];" % t)
code.putln("char *__pyx_temp_pointer_%d;" % i)
code.putln("Py_ssize_t __pyx_temp_idx_%d;" % i)
code.putln("__pyx_temp_pointer_0 = %s.data;" % self.slice_result)
for i in range(self.ndim):
if i > 0:
code.putln("__pyx_temp_pointer_%d = __pyx_temp_pointer_%d;" % (i, i - 1))
code.putln("for (__pyx_temp_idx_%d = 0; "
"__pyx_temp_idx_%d < __pyx_temp_extent_%d; "
"__pyx_temp_idx_%d++) {" % (i, i, i, i))
return "__pyx_temp_pointer_%d" % (self.ndim - 1)
def end_loops(self):
code = self.code
for i in range(self.ndim - 1, -1, -1):
code.putln("__pyx_temp_pointer_%d += __pyx_temp_stride_%d;" % (i, i))
code.putln("}")
code.end_block()
def copy_c_or_fortran_cname(memview):
if memview.is_c_contig:
c_or_f = 'c'
else:
c_or_f = 'f'
return "__pyx_memoryview_copy_slice_%s_%s" % (
memview.specialization_suffix(), c_or_f)
def get_copy_new_utility(pos, from_memview, to_memview):
if (from_memview.dtype != to_memview.dtype and
not (from_memview.dtype.is_const and from_memview.dtype.const_base_type == to_memview.dtype)):
error(pos, "dtypes must be the same!")
return
if len(from_memview.axes) != len(to_memview.axes):
error(pos, "number of dimensions must be same")
return
if not (to_memview.is_c_contig or to_memview.is_f_contig):
error(pos, "to_memview must be c or f contiguous.")
return
for (access, packing) in from_memview.axes:
if access != 'direct':
error(pos, "cannot handle 'full' or 'ptr' access at this time.")
return
if to_memview.is_c_contig:
mode = 'c'
contig_flag = memview_c_contiguous
elif to_memview.is_f_contig:
mode = 'fortran'
contig_flag = memview_f_contiguous
return load_memview_c_utility(
"CopyContentsUtility",
context=dict(
context,
mode=mode,
dtype_decl=to_memview.dtype.empty_declaration_code(),
contig_flag=contig_flag,
ndim=to_memview.ndim,
func_cname=copy_c_or_fortran_cname(to_memview),
dtype_is_object=int(to_memview.dtype.is_pyobject)),
requires=[copy_contents_new_utility])
def get_axes_specs(env, axes):
'''
get_axes_specs(env, axes) -> list of (access, packing) specs for each axis.
access is one of 'full', 'ptr' or 'direct'
packing is one of 'contig', 'strided' or 'follow'
'''
cythonscope = env.global_scope().context.cython_scope
cythonscope.load_cythonscope()
viewscope = cythonscope.viewscope
access_specs = tuple([viewscope.lookup(name)
for name in ('full', 'direct', 'ptr')])
packing_specs = tuple([viewscope.lookup(name)
for name in ('contig', 'strided', 'follow')])
is_f_contig, is_c_contig = False, False
default_access, default_packing = 'direct', 'strided'
cf_access, cf_packing = default_access, 'follow'
axes_specs = []
# analyse all axes.
for idx, axis in enumerate(axes):
if not axis.start.is_none:
raise CompileError(axis.start.pos, START_ERR)
if not axis.stop.is_none:
raise CompileError(axis.stop.pos, STOP_ERR)
if axis.step.is_none:
axes_specs.append((default_access, default_packing))
elif isinstance(axis.step, IntNode):
# the packing for the ::1 axis is contiguous,
# all others are cf_packing.
if axis.step.compile_time_value(env) != 1:
raise CompileError(axis.step.pos, STEP_ERR)
axes_specs.append((cf_access, 'cfcontig'))
elif isinstance(axis.step, (NameNode, AttributeNode)):
entry = _get_resolved_spec(env, axis.step)
if entry.name in view_constant_to_access_packing:
axes_specs.append(view_constant_to_access_packing[entry.name])
else:
raise CompileError(axis.step.pos, INVALID_ERR)
else:
raise CompileError(axis.step.pos, INVALID_ERR)
# First, find out if we have a ::1 somewhere
contig_dim = 0
is_contig = False
for idx, (access, packing) in enumerate(axes_specs):
if packing == 'cfcontig':
if is_contig:
raise CompileError(axis.step.pos, BOTH_CF_ERR)
contig_dim = idx
axes_specs[idx] = (access, 'contig')
is_contig = True
if is_contig:
# We have a ::1 somewhere, see if we're C or Fortran contiguous
if contig_dim == len(axes) - 1:
is_c_contig = True
else:
is_f_contig = True
if contig_dim and not axes_specs[contig_dim - 1][0] in ('full', 'ptr'):
raise CompileError(axes[contig_dim].pos,
"Fortran contiguous specifier must follow an indirect dimension")
if is_c_contig:
# Contiguous in the last dimension, find the last indirect dimension
contig_dim = -1
for idx, (access, packing) in enumerate(reversed(axes_specs)):
if access in ('ptr', 'full'):
contig_dim = len(axes) - idx - 1
# Replace 'strided' with 'follow' for any dimension following the last
# indirect dimension, the first dimension or the dimension following
# the ::1.
# int[::indirect, ::1, :, :]
# ^ ^
# int[::indirect, :, :, ::1]
# ^ ^
start = contig_dim + 1
stop = len(axes) - is_c_contig
for idx, (access, packing) in enumerate(axes_specs[start:stop]):
idx = contig_dim + 1 + idx
if access != 'direct':
raise CompileError(axes[idx].pos,
"Indirect dimension may not follow "
"Fortran contiguous dimension")
if packing == 'contig':
raise CompileError(axes[idx].pos,
"Dimension may not be contiguous")
axes_specs[idx] = (access, cf_packing)
if is_c_contig:
# For C contiguity, we need to fix the 'contig' dimension
# after the loop
a, p = axes_specs[-1]
axes_specs[-1] = a, 'contig'
validate_axes_specs([axis.start.pos for axis in axes],
axes_specs,
is_c_contig,
is_f_contig)
return axes_specs
def validate_axes(pos, axes):
if len(axes) >= Options.buffer_max_dims:
error(pos, "More dimensions than the maximum number"
" of buffer dimensions were used.")
return False
return True
def is_cf_contig(specs):
is_c_contig = is_f_contig = False
if len(specs) == 1 and specs == [('direct', 'contig')]:
is_c_contig = True
elif (specs[-1] == ('direct','contig') and
all(axis == ('direct','follow') for axis in specs[:-1])):
# c_contiguous: 'follow', 'follow', ..., 'follow', 'contig'
is_c_contig = True
elif (len(specs) > 1 and
specs[0] == ('direct','contig') and
all(axis == ('direct','follow') for axis in specs[1:])):
# f_contiguous: 'contig', 'follow', 'follow', ..., 'follow'
is_f_contig = True
return is_c_contig, is_f_contig
def get_mode(specs):
is_c_contig, is_f_contig = is_cf_contig(specs)
if is_c_contig:
return 'c'
elif is_f_contig:
return 'fortran'
for access, packing in specs:
if access in ('ptr', 'full'):
return 'full'
return 'strided'
view_constant_to_access_packing = {
'generic': ('full', 'strided'),
'strided': ('direct', 'strided'),
'indirect': ('ptr', 'strided'),
'generic_contiguous': ('full', 'contig'),
'contiguous': ('direct', 'contig'),
'indirect_contiguous': ('ptr', 'contig'),
}
def validate_axes_specs(positions, specs, is_c_contig, is_f_contig):
packing_specs = ('contig', 'strided', 'follow')
access_specs = ('direct', 'ptr', 'full')
# is_c_contig, is_f_contig = is_cf_contig(specs)
has_contig = has_follow = has_strided = has_generic_contig = False
last_indirect_dimension = -1
for idx, (access, packing) in enumerate(specs):
if access == 'ptr':
last_indirect_dimension = idx
for idx, (pos, (access, packing)) in enumerate(zip(positions, specs)):
if not (access in access_specs and
packing in packing_specs):
raise CompileError(pos, "Invalid axes specification.")
if packing == 'strided':
has_strided = True
elif packing == 'contig':
if has_contig:
raise CompileError(pos, "Only one direct contiguous "
"axis may be specified.")
valid_contig_dims = last_indirect_dimension + 1, len(specs) - 1
if idx not in valid_contig_dims and access != 'ptr':
if last_indirect_dimension + 1 != len(specs) - 1:
dims = "dimensions %d and %d" % valid_contig_dims
else:
dims = "dimension %d" % valid_contig_dims[0]
raise CompileError(pos, "Only %s may be contiguous and direct" % dims)
has_contig = access != 'ptr'
elif packing == 'follow':
if has_strided:
raise CompileError(pos, "A memoryview cannot have both follow and strided axis specifiers.")
if not (is_c_contig or is_f_contig):
raise CompileError(pos, "Invalid use of the follow specifier.")
if access in ('ptr', 'full'):
has_strided = False
def _get_resolved_spec(env, spec):
# spec must be a NameNode or an AttributeNode
if isinstance(spec, NameNode):
return _resolve_NameNode(env, spec)
elif isinstance(spec, AttributeNode):
return _resolve_AttributeNode(env, spec)
else:
raise CompileError(spec.pos, INVALID_ERR)
def _resolve_NameNode(env, node):
try:
resolved_name = env.lookup(node.name).name
except AttributeError:
raise CompileError(node.pos, INVALID_ERR)
viewscope = env.global_scope().context.cython_scope.viewscope
entry = viewscope.lookup(resolved_name)
if entry is None:
raise CompileError(node.pos, NOT_CIMPORTED_ERR)
return entry
def _resolve_AttributeNode(env, node):
path = []
while isinstance(node, AttributeNode):
path.insert(0, node.attribute)
node = node.obj
if isinstance(node, NameNode):
path.insert(0, node.name)
else:
raise CompileError(node.pos, EXPR_ERR)
modnames = path[:-1]
# must be at least 1 module name, o/w not an AttributeNode.
assert modnames
scope = env
for modname in modnames:
mod = scope.lookup(modname)
if not mod or not mod.as_module:
raise CompileError(
node.pos, "undeclared name not builtin: %s" % modname)
scope = mod.as_module
entry = scope.lookup(path[-1])
if not entry:
raise CompileError(node.pos, "No such attribute '%s'" % path[-1])
return entry
#
### Utility loading
#
def load_memview_cy_utility(util_code_name, context=None, **kwargs):
return CythonUtilityCode.load(util_code_name, "MemoryView.pyx",
context=context, **kwargs)
def load_memview_c_utility(util_code_name, context=None, **kwargs):
if context is None:
return UtilityCode.load(util_code_name, "MemoryView_C.c", **kwargs)
else:
return TempitaUtilityCode.load(util_code_name, "MemoryView_C.c",
context=context, **kwargs)
def use_cython_array_utility_code(env):
cython_scope = env.global_scope().context.cython_scope
cython_scope.load_cythonscope()
cython_scope.viewscope.lookup('array_cwrapper').used = True
context = {
'memview_struct_name': memview_objstruct_cname,
'max_dims': Options.buffer_max_dims,
'memviewslice_name': memviewslice_cname,
'memslice_init': memslice_entry_init,
}
memviewslice_declare_code = load_memview_c_utility(
"MemviewSliceStruct",
context=context,
requires=[])
atomic_utility = load_memview_c_utility("Atomics", context)
memviewslice_init_code = load_memview_c_utility(
"MemviewSliceInit",
context=dict(context, BUF_MAX_NDIMS=Options.buffer_max_dims),
requires=[memviewslice_declare_code,
atomic_utility],
)
memviewslice_index_helpers = load_memview_c_utility("MemviewSliceIndex")
typeinfo_to_format_code = load_memview_cy_utility(
"BufferFormatFromTypeInfo", requires=[Buffer._typeinfo_to_format_code])
is_contig_utility = load_memview_c_utility("MemviewSliceIsContig", context)
overlapping_utility = load_memview_c_utility("OverlappingSlices", context)
copy_contents_new_utility = load_memview_c_utility(
"MemviewSliceCopyTemplate",
context,
requires=[], # require cython_array_utility_code
)
view_utility_code = load_memview_cy_utility(
"View.MemoryView",
context=context,
requires=[Buffer.GetAndReleaseBufferUtilityCode(),
Buffer.buffer_struct_declare_code,
Buffer.buffer_formats_declare_code,
memviewslice_init_code,
is_contig_utility,
overlapping_utility,
copy_contents_new_utility,
ModuleNode.capsule_utility_code],
)
view_utility_whitelist = ('array', 'memoryview', 'array_cwrapper',
'generic', 'strided', 'indirect', 'contiguous',
'indirect_contiguous')
memviewslice_declare_code.requires.append(view_utility_code)
copy_contents_new_utility.requires.append(view_utility_code)
|