Spaces:
Build error
Build error
File size: 29,243 Bytes
f07f089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 |
////////// MemviewSliceStruct.proto //////////
//@proto_block: utility_code_proto_before_types
/* memoryview slice struct */
struct {{memview_struct_name}};
typedef struct {
struct {{memview_struct_name}} *memview;
char *data;
Py_ssize_t shape[{{max_dims}}];
Py_ssize_t strides[{{max_dims}}];
Py_ssize_t suboffsets[{{max_dims}}];
} {{memviewslice_name}};
// used for "len(memviewslice)"
#define __Pyx_MemoryView_Len(m) (m.shape[0])
/////////// Atomics.proto /////////////
//@proto_block: utility_code_proto_before_types
#include <pythread.h>
#ifndef CYTHON_ATOMICS
#define CYTHON_ATOMICS 1
#endif
#define __pyx_atomic_int_type int
// todo: Portland pgcc, maybe OS X's OSAtomicIncrement32,
// libatomic + autotools-like distutils support? Such a pain...
#if CYTHON_ATOMICS && __GNUC__ >= 4 && (__GNUC_MINOR__ > 1 || \
(__GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL >= 2)) && \
!defined(__i386__)
/* gcc >= 4.1.2 */
#define __pyx_atomic_incr_aligned(value, lock) __sync_fetch_and_add(value, 1)
#define __pyx_atomic_decr_aligned(value, lock) __sync_fetch_and_sub(value, 1)
#ifdef __PYX_DEBUG_ATOMICS
#warning "Using GNU atomics"
#endif
#elif CYTHON_ATOMICS && defined(_MSC_VER) && 0
/* msvc */
#include <Windows.h>
#undef __pyx_atomic_int_type
#define __pyx_atomic_int_type LONG
#define __pyx_atomic_incr_aligned(value, lock) InterlockedIncrement(value)
#define __pyx_atomic_decr_aligned(value, lock) InterlockedDecrement(value)
#ifdef __PYX_DEBUG_ATOMICS
#pragma message ("Using MSVC atomics")
#endif
#elif CYTHON_ATOMICS && (defined(__ICC) || defined(__INTEL_COMPILER)) && 0
#define __pyx_atomic_incr_aligned(value, lock) _InterlockedIncrement(value)
#define __pyx_atomic_decr_aligned(value, lock) _InterlockedDecrement(value)
#ifdef __PYX_DEBUG_ATOMICS
#warning "Using Intel atomics"
#endif
#else
#undef CYTHON_ATOMICS
#define CYTHON_ATOMICS 0
#ifdef __PYX_DEBUG_ATOMICS
#warning "Not using atomics"
#endif
#endif
typedef volatile __pyx_atomic_int_type __pyx_atomic_int;
#if CYTHON_ATOMICS
#define __pyx_add_acquisition_count(memview) \
__pyx_atomic_incr_aligned(__pyx_get_slice_count_pointer(memview), memview->lock)
#define __pyx_sub_acquisition_count(memview) \
__pyx_atomic_decr_aligned(__pyx_get_slice_count_pointer(memview), memview->lock)
#else
#define __pyx_add_acquisition_count(memview) \
__pyx_add_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock)
#define __pyx_sub_acquisition_count(memview) \
__pyx_sub_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock)
#endif
/////////////// ObjectToMemviewSlice.proto ///////////////
static CYTHON_INLINE {{memviewslice_name}} {{funcname}}(PyObject *, int writable_flag);
////////// MemviewSliceInit.proto //////////
#define __Pyx_BUF_MAX_NDIMS %(BUF_MAX_NDIMS)d
#define __Pyx_MEMVIEW_DIRECT 1
#define __Pyx_MEMVIEW_PTR 2
#define __Pyx_MEMVIEW_FULL 4
#define __Pyx_MEMVIEW_CONTIG 8
#define __Pyx_MEMVIEW_STRIDED 16
#define __Pyx_MEMVIEW_FOLLOW 32
#define __Pyx_IS_C_CONTIG 1
#define __Pyx_IS_F_CONTIG 2
static int __Pyx_init_memviewslice(
struct __pyx_memoryview_obj *memview,
int ndim,
__Pyx_memviewslice *memviewslice,
int memview_is_new_reference);
static CYTHON_INLINE int __pyx_add_acquisition_count_locked(
__pyx_atomic_int *acquisition_count, PyThread_type_lock lock);
static CYTHON_INLINE int __pyx_sub_acquisition_count_locked(
__pyx_atomic_int *acquisition_count, PyThread_type_lock lock);
#define __pyx_get_slice_count_pointer(memview) (memview->acquisition_count_aligned_p)
#define __pyx_get_slice_count(memview) (*__pyx_get_slice_count_pointer(memview))
#define __PYX_INC_MEMVIEW(slice, have_gil) __Pyx_INC_MEMVIEW(slice, have_gil, __LINE__)
#define __PYX_XDEC_MEMVIEW(slice, have_gil) __Pyx_XDEC_MEMVIEW(slice, have_gil, __LINE__)
static CYTHON_INLINE void __Pyx_INC_MEMVIEW({{memviewslice_name}} *, int, int);
static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW({{memviewslice_name}} *, int, int);
/////////////// MemviewSliceIndex.proto ///////////////
static CYTHON_INLINE char *__pyx_memviewslice_index_full(
const char *bufp, Py_ssize_t idx, Py_ssize_t stride, Py_ssize_t suboffset);
/////////////// ObjectToMemviewSlice ///////////////
//@requires: MemviewSliceValidateAndInit
static CYTHON_INLINE {{memviewslice_name}} {{funcname}}(PyObject *obj, int writable_flag) {
{{memviewslice_name}} result = {{memslice_init}};
__Pyx_BufFmt_StackElem stack[{{struct_nesting_depth}}];
int axes_specs[] = { {{axes_specs}} };
int retcode;
if (obj == Py_None) {
/* We don't bother to refcount None */
result.memview = (struct __pyx_memoryview_obj *) Py_None;
return result;
}
retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, {{c_or_f_flag}},
{{buf_flag}} | writable_flag, {{ndim}},
&{{dtype_typeinfo}}, stack,
&result, obj);
if (unlikely(retcode == -1))
goto __pyx_fail;
return result;
__pyx_fail:
result.memview = NULL;
result.data = NULL;
return result;
}
/////////////// MemviewSliceValidateAndInit.proto ///////////////
static int __Pyx_ValidateAndInit_memviewslice(
int *axes_specs,
int c_or_f_flag,
int buf_flags,
int ndim,
__Pyx_TypeInfo *dtype,
__Pyx_BufFmt_StackElem stack[],
__Pyx_memviewslice *memviewslice,
PyObject *original_obj);
/////////////// MemviewSliceValidateAndInit ///////////////
//@requires: Buffer.c::TypeInfoCompare
//@requires: Buffer.c::BufferFormatStructs
//@requires: Buffer.c::BufferFormatCheck
static int
__pyx_check_strides(Py_buffer *buf, int dim, int ndim, int spec)
{
if (buf->shape[dim] <= 1)
return 1;
if (buf->strides) {
if (spec & __Pyx_MEMVIEW_CONTIG) {
if (spec & (__Pyx_MEMVIEW_PTR|__Pyx_MEMVIEW_FULL)) {
if (unlikely(buf->strides[dim] != sizeof(void *))) {
PyErr_Format(PyExc_ValueError,
"Buffer is not indirectly contiguous "
"in dimension %d.", dim);
goto fail;
}
} else if (unlikely(buf->strides[dim] != buf->itemsize)) {
PyErr_SetString(PyExc_ValueError,
"Buffer and memoryview are not contiguous "
"in the same dimension.");
goto fail;
}
}
if (spec & __Pyx_MEMVIEW_FOLLOW) {
Py_ssize_t stride = buf->strides[dim];
if (stride < 0)
stride = -stride;
if (unlikely(stride < buf->itemsize)) {
PyErr_SetString(PyExc_ValueError,
"Buffer and memoryview are not contiguous "
"in the same dimension.");
goto fail;
}
}
} else {
if (unlikely(spec & __Pyx_MEMVIEW_CONTIG && dim != ndim - 1)) {
PyErr_Format(PyExc_ValueError,
"C-contiguous buffer is not contiguous in "
"dimension %d", dim);
goto fail;
} else if (unlikely(spec & (__Pyx_MEMVIEW_PTR))) {
PyErr_Format(PyExc_ValueError,
"C-contiguous buffer is not indirect in "
"dimension %d", dim);
goto fail;
} else if (unlikely(buf->suboffsets)) {
PyErr_SetString(PyExc_ValueError,
"Buffer exposes suboffsets but no strides");
goto fail;
}
}
return 1;
fail:
return 0;
}
static int
__pyx_check_suboffsets(Py_buffer *buf, int dim, CYTHON_UNUSED int ndim, int spec)
{
// Todo: without PyBUF_INDIRECT we may not have suboffset information, i.e., the
// ptr may not be set to NULL but may be uninitialized?
if (spec & __Pyx_MEMVIEW_DIRECT) {
if (unlikely(buf->suboffsets && buf->suboffsets[dim] >= 0)) {
PyErr_Format(PyExc_ValueError,
"Buffer not compatible with direct access "
"in dimension %d.", dim);
goto fail;
}
}
if (spec & __Pyx_MEMVIEW_PTR) {
if (unlikely(!buf->suboffsets || (buf->suboffsets[dim] < 0))) {
PyErr_Format(PyExc_ValueError,
"Buffer is not indirectly accessible "
"in dimension %d.", dim);
goto fail;
}
}
return 1;
fail:
return 0;
}
static int
__pyx_verify_contig(Py_buffer *buf, int ndim, int c_or_f_flag)
{
int i;
if (c_or_f_flag & __Pyx_IS_F_CONTIG) {
Py_ssize_t stride = 1;
for (i = 0; i < ndim; i++) {
if (unlikely(stride * buf->itemsize != buf->strides[i] && buf->shape[i] > 1)) {
PyErr_SetString(PyExc_ValueError,
"Buffer not fortran contiguous.");
goto fail;
}
stride = stride * buf->shape[i];
}
} else if (c_or_f_flag & __Pyx_IS_C_CONTIG) {
Py_ssize_t stride = 1;
for (i = ndim - 1; i >- 1; i--) {
if (unlikely(stride * buf->itemsize != buf->strides[i] && buf->shape[i] > 1)) {
PyErr_SetString(PyExc_ValueError,
"Buffer not C contiguous.");
goto fail;
}
stride = stride * buf->shape[i];
}
}
return 1;
fail:
return 0;
}
static int __Pyx_ValidateAndInit_memviewslice(
int *axes_specs,
int c_or_f_flag,
int buf_flags,
int ndim,
__Pyx_TypeInfo *dtype,
__Pyx_BufFmt_StackElem stack[],
__Pyx_memviewslice *memviewslice,
PyObject *original_obj)
{
struct __pyx_memoryview_obj *memview, *new_memview;
__Pyx_RefNannyDeclarations
Py_buffer *buf;
int i, spec = 0, retval = -1;
__Pyx_BufFmt_Context ctx;
int from_memoryview = __pyx_memoryview_check(original_obj);
__Pyx_RefNannySetupContext("ValidateAndInit_memviewslice", 0);
if (from_memoryview && __pyx_typeinfo_cmp(dtype, ((struct __pyx_memoryview_obj *)
original_obj)->typeinfo)) {
/* We have a matching dtype, skip format parsing */
memview = (struct __pyx_memoryview_obj *) original_obj;
new_memview = NULL;
} else {
memview = (struct __pyx_memoryview_obj *) __pyx_memoryview_new(
original_obj, buf_flags, 0, dtype);
new_memview = memview;
if (unlikely(!memview))
goto fail;
}
buf = &memview->view;
if (unlikely(buf->ndim != ndim)) {
PyErr_Format(PyExc_ValueError,
"Buffer has wrong number of dimensions (expected %d, got %d)",
ndim, buf->ndim);
goto fail;
}
if (new_memview) {
__Pyx_BufFmt_Init(&ctx, stack, dtype);
if (unlikely(!__Pyx_BufFmt_CheckString(&ctx, buf->format))) goto fail;
}
if (unlikely((unsigned) buf->itemsize != dtype->size)) {
PyErr_Format(PyExc_ValueError,
"Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "u byte%s) "
"does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "u byte%s)",
buf->itemsize,
(buf->itemsize > 1) ? "s" : "",
dtype->name,
dtype->size,
(dtype->size > 1) ? "s" : "");
goto fail;
}
/* Check axes */
if (buf->len > 0) {
// 0-sized arrays do not undergo these checks since their strides are
// irrelevant and they are always both C- and F-contiguous.
for (i = 0; i < ndim; i++) {
spec = axes_specs[i];
if (unlikely(!__pyx_check_strides(buf, i, ndim, spec)))
goto fail;
if (unlikely(!__pyx_check_suboffsets(buf, i, ndim, spec)))
goto fail;
}
/* Check contiguity */
if (unlikely(buf->strides && !__pyx_verify_contig(buf, ndim, c_or_f_flag)))
goto fail;
}
/* Initialize */
if (unlikely(__Pyx_init_memviewslice(memview, ndim, memviewslice,
new_memview != NULL) == -1)) {
goto fail;
}
retval = 0;
goto no_fail;
fail:
Py_XDECREF(new_memview);
retval = -1;
no_fail:
__Pyx_RefNannyFinishContext();
return retval;
}
////////// MemviewSliceInit //////////
static int
__Pyx_init_memviewslice(struct __pyx_memoryview_obj *memview,
int ndim,
{{memviewslice_name}} *memviewslice,
int memview_is_new_reference)
{
__Pyx_RefNannyDeclarations
int i, retval=-1;
Py_buffer *buf = &memview->view;
__Pyx_RefNannySetupContext("init_memviewslice", 0);
if (unlikely(memviewslice->memview || memviewslice->data)) {
PyErr_SetString(PyExc_ValueError,
"memviewslice is already initialized!");
goto fail;
}
if (buf->strides) {
for (i = 0; i < ndim; i++) {
memviewslice->strides[i] = buf->strides[i];
}
} else {
Py_ssize_t stride = buf->itemsize;
for (i = ndim - 1; i >= 0; i--) {
memviewslice->strides[i] = stride;
stride *= buf->shape[i];
}
}
for (i = 0; i < ndim; i++) {
memviewslice->shape[i] = buf->shape[i];
if (buf->suboffsets) {
memviewslice->suboffsets[i] = buf->suboffsets[i];
} else {
memviewslice->suboffsets[i] = -1;
}
}
memviewslice->memview = memview;
memviewslice->data = (char *)buf->buf;
if (__pyx_add_acquisition_count(memview) == 0 && !memview_is_new_reference) {
Py_INCREF(memview);
}
retval = 0;
goto no_fail;
fail:
/* Don't decref, the memoryview may be borrowed. Let the caller do the cleanup */
/* __Pyx_XDECREF(memviewslice->memview); */
memviewslice->memview = 0;
memviewslice->data = 0;
retval = -1;
no_fail:
__Pyx_RefNannyFinishContext();
return retval;
}
#ifndef Py_NO_RETURN
// available since Py3.3
#define Py_NO_RETURN
#endif
static void __pyx_fatalerror(const char *fmt, ...) Py_NO_RETURN {
va_list vargs;
char msg[200];
#ifdef HAVE_STDARG_PROTOTYPES
va_start(vargs, fmt);
#else
va_start(vargs);
#endif
vsnprintf(msg, 200, fmt, vargs);
va_end(vargs);
Py_FatalError(msg);
}
static CYTHON_INLINE int
__pyx_add_acquisition_count_locked(__pyx_atomic_int *acquisition_count,
PyThread_type_lock lock)
{
int result;
PyThread_acquire_lock(lock, 1);
result = (*acquisition_count)++;
PyThread_release_lock(lock);
return result;
}
static CYTHON_INLINE int
__pyx_sub_acquisition_count_locked(__pyx_atomic_int *acquisition_count,
PyThread_type_lock lock)
{
int result;
PyThread_acquire_lock(lock, 1);
result = (*acquisition_count)--;
PyThread_release_lock(lock);
return result;
}
static CYTHON_INLINE void
__Pyx_INC_MEMVIEW({{memviewslice_name}} *memslice, int have_gil, int lineno)
{
int first_time;
struct {{memview_struct_name}} *memview = memslice->memview;
if (unlikely(!memview || (PyObject *) memview == Py_None))
return; /* allow uninitialized memoryview assignment */
if (unlikely(__pyx_get_slice_count(memview) < 0))
__pyx_fatalerror("Acquisition count is %d (line %d)",
__pyx_get_slice_count(memview), lineno);
first_time = __pyx_add_acquisition_count(memview) == 0;
if (unlikely(first_time)) {
if (have_gil) {
Py_INCREF((PyObject *) memview);
} else {
PyGILState_STATE _gilstate = PyGILState_Ensure();
Py_INCREF((PyObject *) memview);
PyGILState_Release(_gilstate);
}
}
}
static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW({{memviewslice_name}} *memslice,
int have_gil, int lineno) {
int last_time;
struct {{memview_struct_name}} *memview = memslice->memview;
if (unlikely(!memview || (PyObject *) memview == Py_None)) {
// we do not ref-count None
memslice->memview = NULL;
return;
}
if (unlikely(__pyx_get_slice_count(memview) <= 0))
__pyx_fatalerror("Acquisition count is %d (line %d)",
__pyx_get_slice_count(memview), lineno);
last_time = __pyx_sub_acquisition_count(memview) == 1;
memslice->data = NULL;
if (unlikely(last_time)) {
if (have_gil) {
Py_CLEAR(memslice->memview);
} else {
PyGILState_STATE _gilstate = PyGILState_Ensure();
Py_CLEAR(memslice->memview);
PyGILState_Release(_gilstate);
}
} else {
memslice->memview = NULL;
}
}
////////// MemviewSliceCopyTemplate.proto //////////
static {{memviewslice_name}}
__pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs,
const char *mode, int ndim,
size_t sizeof_dtype, int contig_flag,
int dtype_is_object);
////////// MemviewSliceCopyTemplate //////////
static {{memviewslice_name}}
__pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs,
const char *mode, int ndim,
size_t sizeof_dtype, int contig_flag,
int dtype_is_object)
{
__Pyx_RefNannyDeclarations
int i;
__Pyx_memviewslice new_mvs = {{memslice_init}};
struct __pyx_memoryview_obj *from_memview = from_mvs->memview;
Py_buffer *buf = &from_memview->view;
PyObject *shape_tuple = NULL;
PyObject *temp_int = NULL;
struct __pyx_array_obj *array_obj = NULL;
struct __pyx_memoryview_obj *memview_obj = NULL;
__Pyx_RefNannySetupContext("__pyx_memoryview_copy_new_contig", 0);
for (i = 0; i < ndim; i++) {
if (unlikely(from_mvs->suboffsets[i] >= 0)) {
PyErr_Format(PyExc_ValueError, "Cannot copy memoryview slice with "
"indirect dimensions (axis %d)", i);
goto fail;
}
}
shape_tuple = PyTuple_New(ndim);
if (unlikely(!shape_tuple)) {
goto fail;
}
__Pyx_GOTREF(shape_tuple);
for(i = 0; i < ndim; i++) {
temp_int = PyInt_FromSsize_t(from_mvs->shape[i]);
if(unlikely(!temp_int)) {
goto fail;
} else {
PyTuple_SET_ITEM(shape_tuple, i, temp_int);
temp_int = NULL;
}
}
array_obj = __pyx_array_new(shape_tuple, sizeof_dtype, buf->format, (char *) mode, NULL);
if (unlikely(!array_obj)) {
goto fail;
}
__Pyx_GOTREF(array_obj);
memview_obj = (struct __pyx_memoryview_obj *) __pyx_memoryview_new(
(PyObject *) array_obj, contig_flag,
dtype_is_object,
from_mvs->memview->typeinfo);
if (unlikely(!memview_obj))
goto fail;
/* initialize new_mvs */
if (unlikely(__Pyx_init_memviewslice(memview_obj, ndim, &new_mvs, 1) < 0))
goto fail;
if (unlikely(__pyx_memoryview_copy_contents(*from_mvs, new_mvs, ndim, ndim,
dtype_is_object) < 0))
goto fail;
goto no_fail;
fail:
__Pyx_XDECREF(new_mvs.memview);
new_mvs.memview = NULL;
new_mvs.data = NULL;
no_fail:
__Pyx_XDECREF(shape_tuple);
__Pyx_XDECREF(temp_int);
__Pyx_XDECREF(array_obj);
__Pyx_RefNannyFinishContext();
return new_mvs;
}
////////// CopyContentsUtility.proto /////////
#define {{func_cname}}(slice) \
__pyx_memoryview_copy_new_contig(&slice, "{{mode}}", {{ndim}}, \
sizeof({{dtype_decl}}), {{contig_flag}}, \
{{dtype_is_object}})
////////// OverlappingSlices.proto //////////
static int __pyx_slices_overlap({{memviewslice_name}} *slice1,
{{memviewslice_name}} *slice2,
int ndim, size_t itemsize);
////////// OverlappingSlices //////////
/* Based on numpy's core/src/multiarray/array_assign.c */
/* Gets a half-open range [start, end) which contains the array data */
static void
__pyx_get_array_memory_extents({{memviewslice_name}} *slice,
void **out_start, void **out_end,
int ndim, size_t itemsize)
{
char *start, *end;
int i;
start = end = slice->data;
for (i = 0; i < ndim; i++) {
Py_ssize_t stride = slice->strides[i];
Py_ssize_t extent = slice->shape[i];
if (extent == 0) {
*out_start = *out_end = start;
return;
} else {
if (stride > 0)
end += stride * (extent - 1);
else
start += stride * (extent - 1);
}
}
/* Return a half-open range */
*out_start = start;
*out_end = end + itemsize;
}
/* Returns 1 if the arrays have overlapping data, 0 otherwise */
static int
__pyx_slices_overlap({{memviewslice_name}} *slice1,
{{memviewslice_name}} *slice2,
int ndim, size_t itemsize)
{
void *start1, *end1, *start2, *end2;
__pyx_get_array_memory_extents(slice1, &start1, &end1, ndim, itemsize);
__pyx_get_array_memory_extents(slice2, &start2, &end2, ndim, itemsize);
return (start1 < end2) && (start2 < end1);
}
////////// MemviewSliceCheckContig.proto //////////
#define __pyx_memviewslice_is_contig_{{contig_type}}{{ndim}}(slice) \
__pyx_memviewslice_is_contig(slice, '{{contig_type}}', {{ndim}})
////////// MemviewSliceIsContig.proto //////////
static int __pyx_memviewslice_is_contig(const {{memviewslice_name}} mvs, char order, int ndim);/*proto*/
////////// MemviewSliceIsContig //////////
static int
__pyx_memviewslice_is_contig(const {{memviewslice_name}} mvs, char order, int ndim)
{
int i, index, step, start;
Py_ssize_t itemsize = mvs.memview->view.itemsize;
if (order == 'F') {
step = 1;
start = 0;
} else {
step = -1;
start = ndim - 1;
}
for (i = 0; i < ndim; i++) {
index = start + step * i;
if (mvs.suboffsets[index] >= 0 || mvs.strides[index] != itemsize)
return 0;
itemsize *= mvs.shape[index];
}
return 1;
}
/////////////// MemviewSliceIndex ///////////////
static CYTHON_INLINE char *
__pyx_memviewslice_index_full(const char *bufp, Py_ssize_t idx,
Py_ssize_t stride, Py_ssize_t suboffset)
{
bufp = bufp + idx * stride;
if (suboffset >= 0) {
bufp = *((char **) bufp) + suboffset;
}
return (char *) bufp;
}
/////////////// MemviewDtypeToObject.proto ///////////////
{{if to_py_function}}
static CYTHON_INLINE PyObject *{{get_function}}(const char *itemp); /* proto */
{{endif}}
{{if from_py_function}}
static CYTHON_INLINE int {{set_function}}(const char *itemp, PyObject *obj); /* proto */
{{endif}}
/////////////// MemviewDtypeToObject ///////////////
{{#__pyx_memview_<dtype_name>_to_object}}
/* Convert a dtype to or from a Python object */
{{if to_py_function}}
static CYTHON_INLINE PyObject *{{get_function}}(const char *itemp) {
return (PyObject *) {{to_py_function}}(*({{dtype}} *) itemp);
}
{{endif}}
{{if from_py_function}}
static CYTHON_INLINE int {{set_function}}(const char *itemp, PyObject *obj) {
{{dtype}} value = {{from_py_function}}(obj);
if ({{error_condition}})
return 0;
*({{dtype}} *) itemp = value;
return 1;
}
{{endif}}
/////////////// MemviewObjectToObject.proto ///////////////
/* Function callbacks (for memoryview object) for dtype object */
static PyObject *{{get_function}}(const char *itemp); /* proto */
static int {{set_function}}(const char *itemp, PyObject *obj); /* proto */
/////////////// MemviewObjectToObject ///////////////
static PyObject *{{get_function}}(const char *itemp) {
PyObject *result = *(PyObject **) itemp;
Py_INCREF(result);
return result;
}
static int {{set_function}}(const char *itemp, PyObject *obj) {
Py_INCREF(obj);
Py_DECREF(*(PyObject **) itemp);
*(PyObject **) itemp = obj;
return 1;
}
/////////// ToughSlice //////////
/* Dimension is indexed with 'start:stop:step' */
if (unlikely(__pyx_memoryview_slice_memviewslice(
&{{dst}},
{{src}}.shape[{{dim}}], {{src}}.strides[{{dim}}], {{src}}.suboffsets[{{dim}}],
{{dim}},
{{new_ndim}},
&{{get_suboffset_dim()}},
{{start}},
{{stop}},
{{step}},
{{int(have_start)}},
{{int(have_stop)}},
{{int(have_step)}},
1) < 0))
{
{{error_goto}}
}
////////// SimpleSlice //////////
/* Dimension is indexed with ':' only */
{{dst}}.shape[{{new_ndim}}] = {{src}}.shape[{{dim}}];
{{dst}}.strides[{{new_ndim}}] = {{src}}.strides[{{dim}}];
{{if access == 'direct'}}
{{dst}}.suboffsets[{{new_ndim}}] = -1;
{{else}}
{{dst}}.suboffsets[{{new_ndim}}] = {{src}}.suboffsets[{{dim}}];
if ({{src}}.suboffsets[{{dim}}] >= 0)
{{get_suboffset_dim()}} = {{new_ndim}};
{{endif}}
////////// SliceIndex //////////
// Dimension is indexed with an integer, we could use the ToughSlice
// approach, but this is faster
{
Py_ssize_t __pyx_tmp_idx = {{idx}};
{{if wraparound or boundscheck}}
Py_ssize_t __pyx_tmp_shape = {{src}}.shape[{{dim}}];
{{endif}}
Py_ssize_t __pyx_tmp_stride = {{src}}.strides[{{dim}}];
{{if wraparound}}
if (__pyx_tmp_idx < 0)
__pyx_tmp_idx += __pyx_tmp_shape;
{{endif}}
{{if boundscheck}}
if (unlikely(!__Pyx_is_valid_index(__pyx_tmp_idx, __pyx_tmp_shape))) {
{{if not have_gil}}
#ifdef WITH_THREAD
PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();
#endif
{{endif}}
PyErr_SetString(PyExc_IndexError,
"Index out of bounds (axis {{dim}})");
{{if not have_gil}}
#ifdef WITH_THREAD
PyGILState_Release(__pyx_gilstate_save);
#endif
{{endif}}
{{error_goto}}
}
{{endif}}
{{if all_dimensions_direct}}
{{dst}}.data += __pyx_tmp_idx * __pyx_tmp_stride;
{{else}}
if ({{get_suboffset_dim()}} < 0) {
{{dst}}.data += __pyx_tmp_idx * __pyx_tmp_stride;
/* This dimension is the first dimension, or is preceded by */
/* direct or indirect dimensions that are indexed away. */
/* Hence suboffset_dim must be less than zero, and we can have */
/* our data pointer refer to another block by dereferencing. */
/* slice.data -> B -> C becomes slice.data -> C */
{{if indirect}}
{
Py_ssize_t __pyx_tmp_suboffset = {{src}}.suboffsets[{{dim}}];
{{if generic}}
if (__pyx_tmp_suboffset >= 0)
{{endif}}
{{dst}}.data = *((char **) {{dst}}.data) + __pyx_tmp_suboffset;
}
{{endif}}
} else {
{{dst}}.suboffsets[{{get_suboffset_dim()}}] += __pyx_tmp_idx * __pyx_tmp_stride;
/* Note: dimension can not be indirect, the compiler will have */
/* issued an error */
}
{{endif}}
}
////////// FillStrided1DScalar.proto //////////
static void
__pyx_fill_slice_{{dtype_name}}({{type_decl}} *p, Py_ssize_t extent, Py_ssize_t stride,
size_t itemsize, void *itemp);
////////// FillStrided1DScalar //////////
/* Fill a slice with a scalar value. The dimension is direct and strided or contiguous */
/* This can be used as a callback for the memoryview object to efficienty assign a scalar */
/* Currently unused */
static void
__pyx_fill_slice_{{dtype_name}}({{type_decl}} *p, Py_ssize_t extent, Py_ssize_t stride,
size_t itemsize, void *itemp)
{
Py_ssize_t i;
{{type_decl}} item = *(({{type_decl}} *) itemp);
{{type_decl}} *endp;
stride /= sizeof({{type_decl}});
endp = p + stride * extent;
while (p < endp) {
*p = item;
p += stride;
}
}
|