Spaces:
Build error
Build error
import os | |
import json | |
import numpy as np | |
from scipy.optimize import linear_sum_assignment | |
from ..utils import TrackEvalException | |
from ._base_dataset import _BaseDataset | |
from .. import utils | |
from .. import _timing | |
class BDD100K(_BaseDataset): | |
"""Dataset class for BDD100K tracking""" | |
def get_default_dataset_config(): | |
"""Default class config values""" | |
code_path = utils.get_code_path() | |
default_config = { | |
'GT_FOLDER': os.path.join(code_path, 'data/gt/bdd100k/bdd100k_val'), # Location of GT data | |
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/bdd100k/bdd100k_val'), # Trackers location | |
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER) | |
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder) | |
'CLASSES_TO_EVAL': ['pedestrian', 'rider', 'car', 'bus', 'truck', 'train', 'motorcycle', 'bicycle'], | |
# Valid: ['pedestrian', 'rider', 'car', 'bus', 'truck', 'train', 'motorcycle', 'bicycle'] | |
'SPLIT_TO_EVAL': 'val', # Valid: 'training', 'val', | |
'INPUT_AS_ZIP': False, # Whether tracker input files are zipped | |
'PRINT_CONFIG': True, # Whether to print current config | |
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER | |
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER | |
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL | |
} | |
return default_config | |
def __init__(self, config=None): | |
"""Initialise dataset, checking that all required files are present""" | |
super().__init__() | |
# Fill non-given config values with defaults | |
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name()) | |
self.gt_fol = self.config['GT_FOLDER'] | |
self.tracker_fol = self.config['TRACKERS_FOLDER'] | |
self.should_classes_combine = True | |
self.use_super_categories = True | |
self.output_fol = self.config['OUTPUT_FOLDER'] | |
if self.output_fol is None: | |
self.output_fol = self.tracker_fol | |
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER'] | |
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER'] | |
# Get classes to eval | |
self.valid_classes = ['pedestrian', 'rider', 'car', 'bus', 'truck', 'train', 'motorcycle', 'bicycle'] | |
self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None | |
for cls in self.config['CLASSES_TO_EVAL']] | |
if not all(self.class_list): | |
raise TrackEvalException('Attempted to evaluate an invalid class. Only classes [pedestrian, rider, car, ' | |
'bus, truck, train, motorcycle, bicycle] are valid.') | |
self.super_categories = {"HUMAN": [cls for cls in ["pedestrian", "rider"] if cls in self.class_list], | |
"VEHICLE": [cls for cls in ["car", "truck", "bus", "train"] if cls in self.class_list], | |
"BIKE": [cls for cls in ["motorcycle", "bicycle"] if cls in self.class_list]} | |
self.distractor_classes = ['other person', 'trailer', 'other vehicle'] | |
self.class_name_to_class_id = {'pedestrian': 1, 'rider': 2, 'other person': 3, 'car': 4, 'bus': 5, 'truck': 6, | |
'train': 7, 'trailer': 8, 'other vehicle': 9, 'motorcycle': 10, 'bicycle': 11} | |
# Get sequences to eval | |
self.seq_list = [] | |
self.seq_lengths = {} | |
self.seq_list = [seq_file.replace('.json', '') for seq_file in os.listdir(self.gt_fol)] | |
# Get trackers to eval | |
if self.config['TRACKERS_TO_EVAL'] is None: | |
self.tracker_list = os.listdir(self.tracker_fol) | |
else: | |
self.tracker_list = self.config['TRACKERS_TO_EVAL'] | |
if self.config['TRACKER_DISPLAY_NAMES'] is None: | |
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list)) | |
elif (self.config['TRACKERS_TO_EVAL'] is not None) and ( | |
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)): | |
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES'])) | |
else: | |
raise TrackEvalException('List of tracker files and tracker display names do not match.') | |
for tracker in self.tracker_list: | |
for seq in self.seq_list: | |
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.json') | |
if not os.path.isfile(curr_file): | |
print('Tracker file not found: ' + curr_file) | |
raise TrackEvalException( | |
'Tracker file not found: ' + tracker + '/' + self.tracker_sub_fol + '/' + os.path.basename( | |
curr_file)) | |
def get_display_name(self, tracker): | |
return self.tracker_to_disp[tracker] | |
def _load_raw_file(self, tracker, seq, is_gt): | |
"""Load a file (gt or tracker) in the BDD100K format | |
If is_gt, this returns a dict which contains the fields: | |
[gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det). | |
[gt_dets, gt_crowd_ignore_regions]: list (for each timestep) of lists of detections. | |
if not is_gt, this returns a dict which contains the fields: | |
[tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det). | |
[tracker_dets]: list (for each timestep) of lists of detections. | |
""" | |
# File location | |
if is_gt: | |
file = os.path.join(self.gt_fol, seq + '.json') | |
else: | |
file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.json') | |
with open(file) as f: | |
data = json.load(f) | |
# sort data by frame index | |
data = sorted(data, key=lambda x: x['index']) | |
# check sequence length | |
if is_gt: | |
self.seq_lengths[seq] = len(data) | |
num_timesteps = len(data) | |
else: | |
num_timesteps = self.seq_lengths[seq] | |
if num_timesteps != len(data): | |
raise TrackEvalException('Number of ground truth and tracker timesteps do not match for sequence %s' | |
% seq) | |
# Convert data to required format | |
data_keys = ['ids', 'classes', 'dets'] | |
if is_gt: | |
data_keys += ['gt_crowd_ignore_regions'] | |
raw_data = {key: [None] * num_timesteps for key in data_keys} | |
for t in range(num_timesteps): | |
ig_ids = [] | |
keep_ids = [] | |
for i in range(len(data[t]['labels'])): | |
ann = data[t]['labels'][i] | |
if is_gt and (ann['category'] in self.distractor_classes or 'attributes' in ann.keys() | |
and ann['attributes']['Crowd']): | |
ig_ids.append(i) | |
else: | |
keep_ids.append(i) | |
if keep_ids: | |
raw_data['dets'][t] = np.atleast_2d([[data[t]['labels'][i]['box2d']['x1'], | |
data[t]['labels'][i]['box2d']['y1'], | |
data[t]['labels'][i]['box2d']['x2'], | |
data[t]['labels'][i]['box2d']['y2'] | |
] for i in keep_ids]).astype(float) | |
raw_data['ids'][t] = np.atleast_1d([data[t]['labels'][i]['id'] for i in keep_ids]).astype(int) | |
raw_data['classes'][t] = np.atleast_1d([self.class_name_to_class_id[data[t]['labels'][i]['category']] | |
for i in keep_ids]).astype(int) | |
else: | |
raw_data['dets'][t] = np.empty((0, 4)).astype(float) | |
raw_data['ids'][t] = np.empty(0).astype(int) | |
raw_data['classes'][t] = np.empty(0).astype(int) | |
if is_gt: | |
if ig_ids: | |
raw_data['gt_crowd_ignore_regions'][t] = np.atleast_2d([[data[t]['labels'][i]['box2d']['x1'], | |
data[t]['labels'][i]['box2d']['y1'], | |
data[t]['labels'][i]['box2d']['x2'], | |
data[t]['labels'][i]['box2d']['y2'] | |
] for i in ig_ids]).astype(float) | |
else: | |
raw_data['gt_crowd_ignore_regions'][t] = np.empty((0, 4)).astype(float) | |
if is_gt: | |
key_map = {'ids': 'gt_ids', | |
'classes': 'gt_classes', | |
'dets': 'gt_dets'} | |
else: | |
key_map = {'ids': 'tracker_ids', | |
'classes': 'tracker_classes', | |
'dets': 'tracker_dets'} | |
for k, v in key_map.items(): | |
raw_data[v] = raw_data.pop(k) | |
raw_data['num_timesteps'] = num_timesteps | |
return raw_data | |
def get_preprocessed_seq_data(self, raw_data, cls): | |
""" Preprocess data for a single sequence for a single class ready for evaluation. | |
Inputs: | |
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data(). | |
- cls is the class to be evaluated. | |
Outputs: | |
- data is a dict containing all of the information that metrics need to perform evaluation. | |
It contains the following fields: | |
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers. | |
[gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det). | |
[gt_dets, tracker_dets]: list (for each timestep) of lists of detections. | |
[similarity_scores]: list (for each timestep) of 2D NDArrays. | |
Notes: | |
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps. | |
1) Extract only detections relevant for the class to be evaluated (including distractor detections). | |
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a | |
distractor class, or otherwise marked as to be removed. | |
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain | |
other criteria (e.g. are too small). | |
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation. | |
After the above preprocessing steps, this function also calculates the number of gt and tracker detections | |
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are | |
unique within each timestep. | |
BDD100K: | |
In BDD100K, the 4 preproc steps are as follow: | |
1) There are eight classes (pedestrian, rider, car, bus, truck, train, motorcycle, bicycle) | |
which are evaluated separately. | |
2) For BDD100K there is no removal of matched tracker dets. | |
3) Crowd ignore regions are used to remove unmatched detections. | |
4) No removal of gt dets. | |
""" | |
cls_id = self.class_name_to_class_id[cls] | |
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'similarity_scores'] | |
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys} | |
unique_gt_ids = [] | |
unique_tracker_ids = [] | |
num_gt_dets = 0 | |
num_tracker_dets = 0 | |
for t in range(raw_data['num_timesteps']): | |
# Only extract relevant dets for this class for preproc and eval (cls) | |
gt_class_mask = np.atleast_1d(raw_data['gt_classes'][t] == cls_id) | |
gt_class_mask = gt_class_mask.astype(np.bool) | |
gt_ids = raw_data['gt_ids'][t][gt_class_mask] | |
gt_dets = raw_data['gt_dets'][t][gt_class_mask] | |
tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id) | |
tracker_class_mask = tracker_class_mask.astype(np.bool) | |
tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask] | |
tracker_dets = raw_data['tracker_dets'][t][tracker_class_mask] | |
similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask] | |
# Match tracker and gt dets (with hungarian algorithm) | |
unmatched_indices = np.arange(tracker_ids.shape[0]) | |
if gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0: | |
matching_scores = similarity_scores.copy() | |
matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = 0 | |
match_rows, match_cols = linear_sum_assignment(-matching_scores) | |
actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps | |
match_cols = match_cols[actually_matched_mask] | |
unmatched_indices = np.delete(unmatched_indices, match_cols, axis=0) | |
# For unmatched tracker dets, remove those that are greater than 50% within a crowd ignore region. | |
unmatched_tracker_dets = tracker_dets[unmatched_indices, :] | |
crowd_ignore_regions = raw_data['gt_crowd_ignore_regions'][t] | |
intersection_with_ignore_region = self._calculate_box_ious(unmatched_tracker_dets, crowd_ignore_regions, | |
box_format='x0y0x1y1', do_ioa=True) | |
is_within_crowd_ignore_region = np.any(intersection_with_ignore_region > 0.5 + np.finfo('float').eps, | |
axis=1) | |
# Apply preprocessing to remove unwanted tracker dets. | |
to_remove_tracker = unmatched_indices[is_within_crowd_ignore_region] | |
data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0) | |
data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0) | |
similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1) | |
data['gt_ids'][t] = gt_ids | |
data['gt_dets'][t] = gt_dets | |
data['similarity_scores'][t] = similarity_scores | |
unique_gt_ids += list(np.unique(data['gt_ids'][t])) | |
unique_tracker_ids += list(np.unique(data['tracker_ids'][t])) | |
num_tracker_dets += len(data['tracker_ids'][t]) | |
num_gt_dets += len(data['gt_ids'][t]) | |
# Re-label IDs such that there are no empty IDs | |
if len(unique_gt_ids) > 0: | |
unique_gt_ids = np.unique(unique_gt_ids) | |
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1)) | |
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids)) | |
for t in range(raw_data['num_timesteps']): | |
if len(data['gt_ids'][t]) > 0: | |
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int) | |
if len(unique_tracker_ids) > 0: | |
unique_tracker_ids = np.unique(unique_tracker_ids) | |
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1)) | |
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids)) | |
for t in range(raw_data['num_timesteps']): | |
if len(data['tracker_ids'][t]) > 0: | |
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int) | |
# Record overview statistics. | |
data['num_tracker_dets'] = num_tracker_dets | |
data['num_gt_dets'] = num_gt_dets | |
data['num_tracker_ids'] = len(unique_tracker_ids) | |
data['num_gt_ids'] = len(unique_gt_ids) | |
data['num_timesteps'] = raw_data['num_timesteps'] | |
# Ensure that ids are unique per timestep. | |
self._check_unique_ids(data) | |
return data | |
def _calculate_similarities(self, gt_dets_t, tracker_dets_t): | |
similarity_scores = self._calculate_box_ious(gt_dets_t, tracker_dets_t, box_format='x0y0x1y1') | |
return similarity_scores | |