Spaces:
Build error
Build error
import os | |
import numpy as np | |
def iou_batch(bboxes1, bboxes2): | |
""" | |
From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2] | |
""" | |
bboxes2 = np.expand_dims(bboxes2, 0) | |
bboxes1 = np.expand_dims(bboxes1, 1) | |
xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0]) | |
yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1]) | |
xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2]) | |
yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3]) | |
w = np.maximum(0., xx2 - xx1) | |
h = np.maximum(0., yy2 - yy1) | |
wh = w * h | |
o = wh / ((bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1]) | |
+ (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) - wh) | |
return(o) | |
def giou_batch(bboxes1, bboxes2): | |
""" | |
:param bbox_p: predict of bbox(N,4)(x1,y1,x2,y2) | |
:param bbox_g: groundtruth of bbox(N,4)(x1,y1,x2,y2) | |
:return: | |
""" | |
# for details should go to https://arxiv.org/pdf/1902.09630.pdf | |
# ensure predict's bbox form | |
bboxes2 = np.expand_dims(bboxes2, 0) | |
bboxes1 = np.expand_dims(bboxes1, 1) | |
xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0]) | |
yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1]) | |
xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2]) | |
yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3]) | |
w = np.maximum(0., xx2 - xx1) | |
h = np.maximum(0., yy2 - yy1) | |
wh = w * h | |
iou = wh / ((bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1]) | |
+ (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) - wh) | |
xxc1 = np.minimum(bboxes1[..., 0], bboxes2[..., 0]) | |
yyc1 = np.minimum(bboxes1[..., 1], bboxes2[..., 1]) | |
xxc2 = np.maximum(bboxes1[..., 2], bboxes2[..., 2]) | |
yyc2 = np.maximum(bboxes1[..., 3], bboxes2[..., 3]) | |
wc = xxc2 - xxc1 | |
hc = yyc2 - yyc1 | |
assert((wc > 0).all() and (hc > 0).all()) | |
area_enclose = wc * hc | |
giou = iou - (area_enclose - wh) / area_enclose | |
giou = (giou + 1.)/2.0 # resize from (-1,1) to (0,1) | |
return giou | |
def diou_batch(bboxes1, bboxes2): | |
""" | |
:param bbox_p: predict of bbox(N,4)(x1,y1,x2,y2) | |
:param bbox_g: groundtruth of bbox(N,4)(x1,y1,x2,y2) | |
:return: | |
""" | |
# for details should go to https://arxiv.org/pdf/1902.09630.pdf | |
# ensure predict's bbox form | |
bboxes2 = np.expand_dims(bboxes2, 0) | |
bboxes1 = np.expand_dims(bboxes1, 1) | |
# calculate the intersection box | |
xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0]) | |
yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1]) | |
xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2]) | |
yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3]) | |
w = np.maximum(0., xx2 - xx1) | |
h = np.maximum(0., yy2 - yy1) | |
wh = w * h | |
iou = wh / ((bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1]) | |
+ (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) - wh) | |
centerx1 = (bboxes1[..., 0] + bboxes1[..., 2]) / 2.0 | |
centery1 = (bboxes1[..., 1] + bboxes1[..., 3]) / 2.0 | |
centerx2 = (bboxes2[..., 0] + bboxes2[..., 2]) / 2.0 | |
centery2 = (bboxes2[..., 1] + bboxes2[..., 3]) / 2.0 | |
inner_diag = (centerx1 - centerx2) ** 2 + (centery1 - centery2) ** 2 | |
xxc1 = np.minimum(bboxes1[..., 0], bboxes2[..., 0]) | |
yyc1 = np.minimum(bboxes1[..., 1], bboxes2[..., 1]) | |
xxc2 = np.maximum(bboxes1[..., 2], bboxes2[..., 2]) | |
yyc2 = np.maximum(bboxes1[..., 3], bboxes2[..., 3]) | |
outer_diag = (xxc2 - xxc1) ** 2 + (yyc2 - yyc1) ** 2 | |
diou = iou - inner_diag / outer_diag | |
return (diou + 1) / 2.0 # resize from (-1,1) to (0,1) | |
def ciou_batch(bboxes1, bboxes2): | |
""" | |
:param bbox_p: predict of bbox(N,4)(x1,y1,x2,y2) | |
:param bbox_g: groundtruth of bbox(N,4)(x1,y1,x2,y2) | |
:return: | |
""" | |
# for details should go to https://arxiv.org/pdf/1902.09630.pdf | |
# ensure predict's bbox form | |
bboxes2 = np.expand_dims(bboxes2, 0) | |
bboxes1 = np.expand_dims(bboxes1, 1) | |
# calculate the intersection box | |
xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0]) | |
yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1]) | |
xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2]) | |
yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3]) | |
w = np.maximum(0., xx2 - xx1) | |
h = np.maximum(0., yy2 - yy1) | |
wh = w * h | |
iou = wh / ((bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1]) | |
+ (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) - wh) | |
centerx1 = (bboxes1[..., 0] + bboxes1[..., 2]) / 2.0 | |
centery1 = (bboxes1[..., 1] + bboxes1[..., 3]) / 2.0 | |
centerx2 = (bboxes2[..., 0] + bboxes2[..., 2]) / 2.0 | |
centery2 = (bboxes2[..., 1] + bboxes2[..., 3]) / 2.0 | |
inner_diag = (centerx1 - centerx2) ** 2 + (centery1 - centery2) ** 2 | |
xxc1 = np.minimum(bboxes1[..., 0], bboxes2[..., 0]) | |
yyc1 = np.minimum(bboxes1[..., 1], bboxes2[..., 1]) | |
xxc2 = np.maximum(bboxes1[..., 2], bboxes2[..., 2]) | |
yyc2 = np.maximum(bboxes1[..., 3], bboxes2[..., 3]) | |
outer_diag = (xxc2 - xxc1) ** 2 + (yyc2 - yyc1) ** 2 | |
w1 = bboxes1[..., 2] - bboxes1[..., 0] | |
h1 = bboxes1[..., 3] - bboxes1[..., 1] | |
w2 = bboxes2[..., 2] - bboxes2[..., 0] | |
h2 = bboxes2[..., 3] - bboxes2[..., 1] | |
# prevent dividing over zero. add one pixel shift | |
h2 = h2 + 1. | |
h1 = h1 + 1. | |
arctan = np.arctan(w2/h2) - np.arctan(w1/h1) | |
v = (4 / (np.pi ** 2)) * (arctan ** 2) | |
S = 1 - iou | |
alpha = v / (S+v) | |
ciou = iou - inner_diag / outer_diag - alpha * v | |
return (ciou + 1) / 2.0 # resize from (-1,1) to (0,1) | |
def ct_dist(bboxes1, bboxes2): | |
""" | |
Measure the center distance between two sets of bounding boxes, | |
this is a coarse implementation, we don't recommend using it only | |
for association, which can be unstable and sensitive to frame rate | |
and object speed. | |
""" | |
bboxes2 = np.expand_dims(bboxes2, 0) | |
bboxes1 = np.expand_dims(bboxes1, 1) | |
centerx1 = (bboxes1[..., 0] + bboxes1[..., 2]) / 2.0 | |
centery1 = (bboxes1[..., 1] + bboxes1[..., 3]) / 2.0 | |
centerx2 = (bboxes2[..., 0] + bboxes2[..., 2]) / 2.0 | |
centery2 = (bboxes2[..., 1] + bboxes2[..., 3]) / 2.0 | |
ct_dist2 = (centerx1 - centerx2) ** 2 + (centery1 - centery2) ** 2 | |
ct_dist = np.sqrt(ct_dist2) | |
# The linear rescaling is a naive version and needs more study | |
ct_dist = ct_dist / ct_dist.max() | |
return ct_dist.max() - ct_dist # resize to (0,1) | |
def speed_direction_batch(dets, tracks): | |
tracks = tracks[..., np.newaxis] | |
CX1, CY1 = (dets[:,0] + dets[:,2])/2.0, (dets[:,1]+dets[:,3])/2.0 | |
CX2, CY2 = (tracks[:,0] + tracks[:,2]) /2.0, (tracks[:,1]+tracks[:,3])/2.0 | |
dx = CX1 - CX2 | |
dy = CY1 - CY2 | |
norm = np.sqrt(dx**2 + dy**2) + 1e-6 | |
dx = dx / norm | |
dy = dy / norm | |
return dy, dx # size: num_track x num_det | |
def linear_assignment(cost_matrix): | |
try: | |
import lap | |
_, x, y = lap.lapjv(cost_matrix, extend_cost=True) | |
return np.array([[y[i],i] for i in x if i >= 0]) # | |
except ImportError: | |
from scipy.optimize import linear_sum_assignment | |
x, y = linear_sum_assignment(cost_matrix) | |
return np.array(list(zip(x, y))) | |
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3): | |
""" | |
Assigns detections to tracked object (both represented as bounding boxes) | |
Returns 3 lists of matches, unmatched_detections and unmatched_trackers | |
""" | |
if(len(trackers)==0): | |
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) | |
iou_matrix = iou_batch(detections, trackers) | |
if min(iou_matrix.shape) > 0: | |
a = (iou_matrix > iou_threshold).astype(np.int32) | |
if a.sum(1).max() == 1 and a.sum(0).max() == 1: | |
matched_indices = np.stack(np.where(a), axis=1) | |
else: | |
matched_indices = linear_assignment(-iou_matrix) | |
else: | |
matched_indices = np.empty(shape=(0,2)) | |
unmatched_detections = [] | |
for d, det in enumerate(detections): | |
if(d not in matched_indices[:,0]): | |
unmatched_detections.append(d) | |
unmatched_trackers = [] | |
for t, trk in enumerate(trackers): | |
if(t not in matched_indices[:,1]): | |
unmatched_trackers.append(t) | |
#filter out matched with low IOU | |
matches = [] | |
for m in matched_indices: | |
if(iou_matrix[m[0], m[1]]<iou_threshold): | |
unmatched_detections.append(m[0]) | |
unmatched_trackers.append(m[1]) | |
else: | |
matches.append(m.reshape(1,2)) | |
if(len(matches)==0): | |
matches = np.empty((0,2),dtype=int) | |
else: | |
matches = np.concatenate(matches,axis=0) | |
return matches, np.array(unmatched_detections), np.array(unmatched_trackers) | |
def associate(detections, trackers, iou_threshold, velocities, previous_obs, vdc_weight): | |
if(len(trackers)==0): | |
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) | |
Y, X = speed_direction_batch(detections, previous_obs) | |
inertia_Y, inertia_X = velocities[:,0], velocities[:,1] | |
inertia_Y = np.repeat(inertia_Y[:, np.newaxis], Y.shape[1], axis=1) | |
inertia_X = np.repeat(inertia_X[:, np.newaxis], X.shape[1], axis=1) | |
diff_angle_cos = inertia_X * X + inertia_Y * Y | |
diff_angle_cos = np.clip(diff_angle_cos, a_min=-1, a_max=1) | |
diff_angle = np.arccos(diff_angle_cos) | |
diff_angle = (np.pi /2.0 - np.abs(diff_angle)) / np.pi | |
valid_mask = np.ones(previous_obs.shape[0]) | |
valid_mask[np.where(previous_obs[:,4]<0)] = 0 | |
iou_matrix = iou_batch(detections, trackers) | |
scores = np.repeat(detections[:,-1][:, np.newaxis], trackers.shape[0], axis=1) | |
# iou_matrix = iou_matrix * scores # a trick sometiems works, we don't encourage this | |
valid_mask = np.repeat(valid_mask[:, np.newaxis], X.shape[1], axis=1) | |
angle_diff_cost = (valid_mask * diff_angle) * vdc_weight | |
angle_diff_cost = angle_diff_cost.T | |
angle_diff_cost = angle_diff_cost * scores | |
if min(iou_matrix.shape) > 0: | |
a = (iou_matrix > iou_threshold).astype(np.int32) | |
if a.sum(1).max() == 1 and a.sum(0).max() == 1: | |
matched_indices = np.stack(np.where(a), axis=1) | |
else: | |
matched_indices = linear_assignment(-(iou_matrix+angle_diff_cost)) | |
else: | |
matched_indices = np.empty(shape=(0,2)) | |
unmatched_detections = [] | |
for d, det in enumerate(detections): | |
if(d not in matched_indices[:,0]): | |
unmatched_detections.append(d) | |
unmatched_trackers = [] | |
for t, trk in enumerate(trackers): | |
if(t not in matched_indices[:,1]): | |
unmatched_trackers.append(t) | |
# filter out matched with low IOU | |
matches = [] | |
for m in matched_indices: | |
if(iou_matrix[m[0], m[1]]<iou_threshold): | |
unmatched_detections.append(m[0]) | |
unmatched_trackers.append(m[1]) | |
else: | |
matches.append(m.reshape(1,2)) | |
if(len(matches)==0): | |
matches = np.empty((0,2),dtype=int) | |
else: | |
matches = np.concatenate(matches,axis=0) | |
return matches, np.array(unmatched_detections), np.array(unmatched_trackers) | |
def associate_kitti(detections, trackers, det_cates, iou_threshold, | |
velocities, previous_obs, vdc_weight): | |
if(len(trackers)==0): | |
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) | |
""" | |
Cost from the velocity direction consistency | |
""" | |
Y, X = speed_direction_batch(detections, previous_obs) | |
inertia_Y, inertia_X = velocities[:,0], velocities[:,1] | |
inertia_Y = np.repeat(inertia_Y[:, np.newaxis], Y.shape[1], axis=1) | |
inertia_X = np.repeat(inertia_X[:, np.newaxis], X.shape[1], axis=1) | |
diff_angle_cos = inertia_X * X + inertia_Y * Y | |
diff_angle_cos = np.clip(diff_angle_cos, a_min=-1, a_max=1) | |
diff_angle = np.arccos(diff_angle_cos) | |
diff_angle = (np.pi /2.0 - np.abs(diff_angle)) / np.pi | |
valid_mask = np.ones(previous_obs.shape[0]) | |
valid_mask[np.where(previous_obs[:,4]<0)]=0 | |
valid_mask = np.repeat(valid_mask[:, np.newaxis], X.shape[1], axis=1) | |
scores = np.repeat(detections[:,-1][:, np.newaxis], trackers.shape[0], axis=1) | |
angle_diff_cost = (valid_mask * diff_angle) * vdc_weight | |
angle_diff_cost = angle_diff_cost.T | |
angle_diff_cost = angle_diff_cost * scores | |
""" | |
Cost from IoU | |
""" | |
iou_matrix = iou_batch(detections, trackers) | |
""" | |
With multiple categories, generate the cost for catgory mismatch | |
""" | |
num_dets = detections.shape[0] | |
num_trk = trackers.shape[0] | |
cate_matrix = np.zeros((num_dets, num_trk)) | |
for i in range(num_dets): | |
for j in range(num_trk): | |
if det_cates[i] != trackers[j, 4]: | |
cate_matrix[i][j] = -1e6 | |
cost_matrix = - iou_matrix -angle_diff_cost - cate_matrix | |
if min(iou_matrix.shape) > 0: | |
a = (iou_matrix > iou_threshold).astype(np.int32) | |
if a.sum(1).max() == 1 and a.sum(0).max() == 1: | |
matched_indices = np.stack(np.where(a), axis=1) | |
else: | |
matched_indices = linear_assignment(cost_matrix) | |
else: | |
matched_indices = np.empty(shape=(0,2)) | |
unmatched_detections = [] | |
for d, det in enumerate(detections): | |
if(d not in matched_indices[:,0]): | |
unmatched_detections.append(d) | |
unmatched_trackers = [] | |
for t, trk in enumerate(trackers): | |
if(t not in matched_indices[:,1]): | |
unmatched_trackers.append(t) | |
#filter out matched with low IOU | |
matches = [] | |
for m in matched_indices: | |
if(iou_matrix[m[0], m[1]]<iou_threshold): | |
unmatched_detections.append(m[0]) | |
unmatched_trackers.append(m[1]) | |
else: | |
matches.append(m.reshape(1,2)) | |
if(len(matches)==0): | |
matches = np.empty((0,2),dtype=int) | |
else: | |
matches = np.concatenate(matches,axis=0) | |
return matches, np.array(unmatched_detections), np.array(unmatched_trackers) |