yolov5_tracking / val_utils /scripts /run_person_path_22.py
xfys's picture
Upload 645 files
47af768
raw
history blame
4.88 kB
""" run_person_path_22.py
Run example:
python3 run_person_path_22.py \
--BENCHMARK person_path_22 \
--SPLIT_TO_EVAL test \
--TRACKERS_TO_EVAL custom_tracker \
--METRICS HOTA CLEAR Identity VACE \
--USE_PARALLEL True \
--NUM_PARALLEL_CORES 12 \
--TRACKERS_FOLDER $TRACKER_FOLDER
where $TRACKER_FOLDER is the path of the folder containing the tracker predictions in MOTChallenge format.
In particular, $TRACKER_FOLDER is expected to have the following structure:
$TRACKER_FOLDER/
person_path_22-test/
custom_tracker/
data/
uid_vid_00008.mp4.txt
uid_vid_00009.mp4.txt
[...]
uid_vid_00235.mp4.txt
Each text file contains the tracker predictions in MOTChallenge format for a given video.
Command Line Arguments: Defaults, # Comments
Eval arguments:
'USE_PARALLEL': False,
'NUM_PARALLEL_CORES': 8,
'BREAK_ON_ERROR': True,
'PRINT_RESULTS': True,
'PRINT_ONLY_COMBINED': False,
'PRINT_CONFIG': True,
'TIME_PROGRESS': True,
'OUTPUT_SUMMARY': True,
'OUTPUT_DETAILED': True,
'PLOT_CURVES': True,
Dataset arguments:
'GT_FOLDER': os.path.join(code_path, 'data/gt/person_path_22/'), # Location of GT data
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/person_path_22/'), # Trackers location
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER)
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder)
'CLASSES_TO_EVAL': ['pedestrian'], # Valid: ['pedestrian']
'BENCHMARK': 'person_path_22', # Valid: 'person_path_22'
'SPLIT_TO_EVAL': 'train', # Valid: 'train', 'test', 'all'
'INPUT_AS_ZIP': False, # Whether tracker input files are zipped
'PRINT_CONFIG': True, # Whether to print current config
'DO_PREPROC': True, # Whether to perform preprocessing
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
Metric arguments:
'METRICS': ['HOTA', 'CLEAR', 'Identity', 'VACE']
"""
import sys
import os
import argparse
from multiprocessing import freeze_support
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import trackeval # noqa: E402
if __name__ == '__main__':
freeze_support()
# Command line interface:
default_eval_config = trackeval.Evaluator.get_default_eval_config()
default_eval_config['DISPLAY_LESS_PROGRESS'] = False
default_dataset_config = trackeval.datasets.PersonPath22.get_default_dataset_config()
default_metrics_config = {'METRICS': ['HOTA', 'CLEAR', 'Identity'], 'THRESHOLD': 0.5}
config = {**default_eval_config, **default_dataset_config, **default_metrics_config} # Merge default configs
parser = argparse.ArgumentParser()
for setting in config.keys():
if type(config[setting]) == list or type(config[setting]) == type(None):
parser.add_argument("--" + setting, nargs='+')
else:
parser.add_argument("--" + setting)
args = parser.parse_args().__dict__
for setting in args.keys():
if args[setting] is not None:
if type(config[setting]) == type(True):
if args[setting] == 'True':
x = True
elif args[setting] == 'False':
x = False
else:
raise Exception('Command line parameter ' + setting + 'must be True or False')
elif type(config[setting]) == type(1):
x = int(args[setting])
elif type(args[setting]) == type(None):
x = None
elif setting == 'SEQ_INFO':
x = dict(zip(args[setting], [None]*len(args[setting])))
else:
x = args[setting]
config[setting] = x
eval_config = {k: v for k, v in config.items() if k in default_eval_config.keys()}
dataset_config = {k: v for k, v in config.items() if k in default_dataset_config.keys()}
metrics_config = {k: v for k, v in config.items() if k in default_metrics_config.keys()}
# Run code
evaluator = trackeval.Evaluator(eval_config)
dataset_list = [trackeval.datasets.PersonPath22(dataset_config)]
metrics_list = []
for metric in [trackeval.metrics.HOTA, trackeval.metrics.CLEAR, trackeval.metrics.Identity, trackeval.metrics.VACE]:
if metric.get_name() in metrics_config['METRICS']:
metrics_list.append(metric(metrics_config))
if len(metrics_list) == 0:
raise Exception('No metrics selected for evaluation')
evaluator.evaluate(dataset_list, metrics_list)