Spaces:
Build error
Build error
import os | |
import csv | |
import configparser | |
import numpy as np | |
from scipy.optimize import linear_sum_assignment | |
from ._base_dataset import _BaseDataset | |
from .. import utils | |
from .. import _timing | |
from ..utils import TrackEvalException | |
class HeadTrackingChallenge(_BaseDataset): | |
"""Dataset class for Head Tracking Challenge - 2D bounding box tracking""" | |
def get_default_dataset_config(): | |
"""Default class config values""" | |
code_path = utils.get_code_path() | |
default_config = { | |
'GT_FOLDER': os.path.join(code_path, 'data/gt/mot_challenge/'), # Location of GT data | |
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/mot_challenge/'), # Trackers location | |
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER) | |
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder) | |
'CLASSES_TO_EVAL': ['pedestrian'], # Valid: ['pedestrian'] | |
'BENCHMARK': 'HT', # Valid: 'HT'. Refers to "Head Tracking or the dataset CroHD" | |
'SPLIT_TO_EVAL': 'train', # Valid: 'train', 'test', 'all' | |
'INPUT_AS_ZIP': False, # Whether tracker input files are zipped | |
'PRINT_CONFIG': True, # Whether to print current config | |
'DO_PREPROC': True, # Whether to perform preprocessing (never done for MOT15) | |
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER | |
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER | |
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL | |
'SEQMAP_FOLDER': None, # Where seqmaps are found (if None, GT_FOLDER/seqmaps) | |
'SEQMAP_FILE': None, # Directly specify seqmap file (if none use seqmap_folder/benchmark-split_to_eval) | |
'SEQ_INFO': None, # If not None, directly specify sequences to eval and their number of timesteps | |
'GT_LOC_FORMAT': '{gt_folder}/{seq}/gt/gt.txt', # '{gt_folder}/{seq}/gt/gt.txt' | |
'SKIP_SPLIT_FOL': False, # If False, data is in GT_FOLDER/BENCHMARK-SPLIT_TO_EVAL/ and in | |
# TRACKERS_FOLDER/BENCHMARK-SPLIT_TO_EVAL/tracker/ | |
# If True, then the middle 'benchmark-split' folder is skipped for both. | |
} | |
return default_config | |
def __init__(self, config=None): | |
"""Initialise dataset, checking that all required files are present""" | |
super().__init__() | |
# Fill non-given config values with defaults | |
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name()) | |
self.benchmark = self.config['BENCHMARK'] | |
gt_set = self.config['BENCHMARK'] + '-' + self.config['SPLIT_TO_EVAL'] | |
self.gt_set = gt_set | |
if not self.config['SKIP_SPLIT_FOL']: | |
split_fol = gt_set | |
else: | |
split_fol = '' | |
self.gt_fol = os.path.join(self.config['GT_FOLDER'], split_fol) | |
self.tracker_fol = os.path.join(self.config['TRACKERS_FOLDER'], split_fol) | |
self.should_classes_combine = False | |
self.use_super_categories = False | |
self.data_is_zipped = self.config['INPUT_AS_ZIP'] | |
self.do_preproc = self.config['DO_PREPROC'] | |
self.output_fol = self.config['OUTPUT_FOLDER'] | |
if self.output_fol is None: | |
self.output_fol = self.tracker_fol | |
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER'] | |
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER'] | |
# Get classes to eval | |
self.valid_classes = ['pedestrian'] | |
self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None | |
for cls in self.config['CLASSES_TO_EVAL']] | |
if not all(self.class_list): | |
raise TrackEvalException('Attempted to evaluate an invalid class. Only pedestrian class is valid.') | |
self.class_name_to_class_id = {'pedestrian': 1, 'static': 2, 'ignore': 3, 'person_on_vehicle': 4} | |
self.valid_class_numbers = list(self.class_name_to_class_id.values()) | |
# Get sequences to eval and check gt files exist | |
self.seq_list, self.seq_lengths = self._get_seq_info() | |
if len(self.seq_list) < 1: | |
raise TrackEvalException('No sequences are selected to be evaluated.') | |
# Check gt files exist | |
for seq in self.seq_list: | |
if not self.data_is_zipped: | |
curr_file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq) | |
if not os.path.isfile(curr_file): | |
print('GT file not found ' + curr_file) | |
raise TrackEvalException('GT file not found for sequence: ' + seq) | |
if self.data_is_zipped: | |
curr_file = os.path.join(self.gt_fol, 'data.zip') | |
if not os.path.isfile(curr_file): | |
print('GT file not found ' + curr_file) | |
raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file)) | |
# Get trackers to eval | |
if self.config['TRACKERS_TO_EVAL'] is None: | |
self.tracker_list = os.listdir(self.tracker_fol) | |
else: | |
self.tracker_list = self.config['TRACKERS_TO_EVAL'] | |
if self.config['TRACKER_DISPLAY_NAMES'] is None: | |
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list)) | |
elif (self.config['TRACKERS_TO_EVAL'] is not None) and ( | |
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)): | |
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES'])) | |
else: | |
raise TrackEvalException('List of tracker files and tracker display names do not match.') | |
for tracker in self.tracker_list: | |
if self.data_is_zipped: | |
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip') | |
if not os.path.isfile(curr_file): | |
print('Tracker file not found: ' + curr_file) | |
raise TrackEvalException('Tracker file not found: ' + tracker + '/' + os.path.basename(curr_file)) | |
else: | |
for seq in self.seq_list: | |
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt') | |
if not os.path.isfile(curr_file): | |
print('Tracker file not found: ' + curr_file) | |
raise TrackEvalException( | |
'Tracker file not found: ' + tracker + '/' + self.tracker_sub_fol + '/' + os.path.basename( | |
curr_file)) | |
def get_display_name(self, tracker): | |
return self.tracker_to_disp[tracker] | |
def _get_seq_info(self): | |
seq_list = [] | |
seq_lengths = {} | |
if self.config["SEQ_INFO"]: | |
seq_list = list(self.config["SEQ_INFO"].keys()) | |
seq_lengths = self.config["SEQ_INFO"] | |
# If sequence length is 'None' tries to read sequence length from .ini files. | |
for seq, seq_length in seq_lengths.items(): | |
if seq_length is None: | |
ini_file = os.path.join(self.gt_fol, seq, 'seqinfo.ini') | |
if not os.path.isfile(ini_file): | |
raise TrackEvalException('ini file does not exist: ' + seq + '/' + os.path.basename(ini_file)) | |
ini_data = configparser.ConfigParser() | |
ini_data.read(ini_file) | |
seq_lengths[seq] = int(ini_data['Sequence']['seqLength']) | |
else: | |
if self.config["SEQMAP_FILE"]: | |
seqmap_file = self.config["SEQMAP_FILE"] | |
else: | |
if self.config["SEQMAP_FOLDER"] is None: | |
seqmap_file = os.path.join(self.config['GT_FOLDER'], 'seqmaps', self.gt_set + '.txt') | |
else: | |
seqmap_file = os.path.join(self.config["SEQMAP_FOLDER"], self.gt_set + '.txt') | |
if not os.path.isfile(seqmap_file): | |
print('no seqmap found: ' + seqmap_file) | |
raise TrackEvalException('no seqmap found: ' + os.path.basename(seqmap_file)) | |
with open(seqmap_file) as fp: | |
reader = csv.reader(fp) | |
for i, row in enumerate(reader): | |
if i == 0 or row[0] == '': | |
continue | |
seq = row[0] | |
seq_list.append(seq) | |
ini_file = os.path.join(self.gt_fol, seq, 'seqinfo.ini') | |
if not os.path.isfile(ini_file): | |
raise TrackEvalException('ini file does not exist: ' + seq + '/' + os.path.basename(ini_file)) | |
ini_data = configparser.ConfigParser() | |
ini_data.read(ini_file) | |
seq_lengths[seq] = int(ini_data['Sequence']['seqLength']) | |
return seq_list, seq_lengths | |
def _load_raw_file(self, tracker, seq, is_gt): | |
"""Load a file (gt or tracker) in the MOT Challenge 2D box format | |
If is_gt, this returns a dict which contains the fields: | |
[gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det). | |
[gt_dets, gt_crowd_ignore_regions]: list (for each timestep) of lists of detections. | |
[gt_extras] : list (for each timestep) of dicts (for each extra) of 1D NDArrays (for each det). | |
if not is_gt, this returns a dict which contains the fields: | |
[tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det). | |
[tracker_dets]: list (for each timestep) of lists of detections. | |
""" | |
# File location | |
if self.data_is_zipped: | |
if is_gt: | |
zip_file = os.path.join(self.gt_fol, 'data.zip') | |
else: | |
zip_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip') | |
file = seq + '.txt' | |
else: | |
zip_file = None | |
if is_gt: | |
file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq) | |
else: | |
file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt') | |
# Load raw data from text file | |
read_data, ignore_data = self._load_simple_text_file(file, is_zipped=self.data_is_zipped, zip_file=zip_file) | |
# Convert data to required format | |
num_timesteps = self.seq_lengths[seq] | |
data_keys = ['ids', 'classes', 'dets'] | |
if is_gt: | |
data_keys += ['gt_crowd_ignore_regions', 'gt_extras'] | |
else: | |
data_keys += ['tracker_confidences'] | |
if self.benchmark == 'HT': | |
data_keys += ['visibility'] | |
data_keys += ['gt_conf'] | |
raw_data = {key: [None] * num_timesteps for key in data_keys} | |
# Check for any extra time keys | |
current_time_keys = [str( t+ 1) for t in range(num_timesteps)] | |
extra_time_keys = [x for x in read_data.keys() if x not in current_time_keys] | |
if len(extra_time_keys) > 0: | |
if is_gt: | |
text = 'Ground-truth' | |
else: | |
text = 'Tracking' | |
raise TrackEvalException( | |
text + ' data contains the following invalid timesteps in seq %s: ' % seq + ', '.join( | |
[str(x) + ', ' for x in extra_time_keys])) | |
for t in range(num_timesteps): | |
time_key = str(t+1) | |
if time_key in read_data.keys(): | |
try: | |
time_data = np.asarray(read_data[time_key], dtype=np.float) | |
except ValueError: | |
if is_gt: | |
raise TrackEvalException( | |
'Cannot convert gt data for sequence %s to float. Is data corrupted?' % seq) | |
else: | |
raise TrackEvalException( | |
'Cannot convert tracking data from tracker %s, sequence %s to float. Is data corrupted?' % ( | |
tracker, seq)) | |
try: | |
raw_data['dets'][t] = np.atleast_2d(time_data[:, 2:6]) | |
raw_data['ids'][t] = np.atleast_1d(time_data[:, 1]).astype(int) | |
except IndexError: | |
if is_gt: | |
err = 'Cannot load gt data from sequence %s, because there is not enough ' \ | |
'columns in the data.' % seq | |
raise TrackEvalException(err) | |
else: | |
err = 'Cannot load tracker data from tracker %s, sequence %s, because there is not enough ' \ | |
'columns in the data.' % (tracker, seq) | |
raise TrackEvalException(err) | |
if time_data.shape[1] >= 8: | |
raw_data['gt_conf'][t] = np.atleast_1d(time_data[:, 6]).astype(float) | |
raw_data['visibility'][t] = np.atleast_1d(time_data[:, 8]).astype(float) | |
raw_data['classes'][t] = np.atleast_1d(time_data[:, 7]).astype(int) | |
else: | |
if not is_gt: | |
raw_data['classes'][t] = np.ones_like(raw_data['ids'][t]) | |
else: | |
raise TrackEvalException( | |
'GT data is not in a valid format, there is not enough rows in seq %s, timestep %i.' % ( | |
seq, t)) | |
if is_gt: | |
gt_extras_dict = {'zero_marked': np.atleast_1d(time_data[:, 6].astype(int))} | |
raw_data['gt_extras'][t] = gt_extras_dict | |
else: | |
raw_data['tracker_confidences'][t] = np.atleast_1d(time_data[:, 6]) | |
else: | |
raw_data['dets'][t] = np.empty((0, 4)) | |
raw_data['ids'][t] = np.empty(0).astype(int) | |
raw_data['classes'][t] = np.empty(0).astype(int) | |
if is_gt: | |
gt_extras_dict = {'zero_marked': np.empty(0)} | |
raw_data['gt_extras'][t] = gt_extras_dict | |
else: | |
raw_data['tracker_confidences'][t] = np.empty(0) | |
if is_gt: | |
raw_data['gt_crowd_ignore_regions'][t] = np.empty((0, 4)) | |
if is_gt: | |
key_map = {'ids': 'gt_ids', | |
'classes': 'gt_classes', | |
'dets': 'gt_dets'} | |
else: | |
key_map = {'ids': 'tracker_ids', | |
'classes': 'tracker_classes', | |
'dets': 'tracker_dets'} | |
for k, v in key_map.items(): | |
raw_data[v] = raw_data.pop(k) | |
raw_data['num_timesteps'] = num_timesteps | |
raw_data['seq'] = seq | |
return raw_data | |
def get_preprocessed_seq_data(self, raw_data, cls): | |
""" Preprocess data for a single sequence for a single class ready for evaluation. | |
Inputs: | |
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data(). | |
- cls is the class to be evaluated. | |
Outputs: | |
- data is a dict containing all of the information that metrics need to perform evaluation. | |
It contains the following fields: | |
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers. | |
[gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det). | |
[gt_dets, tracker_dets]: list (for each timestep) of lists of detections. | |
[similarity_scores]: list (for each timestep) of 2D NDArrays. | |
Notes: | |
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps. | |
1) Extract only detections relevant for the class to be evaluated (including distractor detections). | |
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a | |
distractor class, or otherwise marked as to be removed. | |
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain | |
other criteria (e.g. are too small). | |
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation. | |
After the above preprocessing steps, this function also calculates the number of gt and tracker detections | |
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are | |
unique within each timestep. | |
MOT Challenge: | |
In MOT Challenge, the 4 preproc steps are as follow: | |
1) There is only one class (pedestrian) to be evaluated, but all other classes are used for preproc. | |
2) Predictions are matched against all gt boxes (regardless of class), those matching with distractor | |
objects are removed. | |
3) There is no crowd ignore regions. | |
4) All gt dets except pedestrian are removed, also removes pedestrian gt dets marked with zero_marked. | |
""" | |
# Check that input data has unique ids | |
self._check_unique_ids(raw_data) | |
# 'static': 2, 'ignore': 3, 'person_on_vehicle': | |
distractor_class_names = ['static', 'ignore', 'person_on_vehicle'] | |
distractor_classes = [self.class_name_to_class_id[x] for x in distractor_class_names] | |
cls_id = self.class_name_to_class_id[cls] | |
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'tracker_confidences', | |
'similarity_scores', 'gt_visibility'] | |
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys} | |
unique_gt_ids = [] | |
unique_tracker_ids = [] | |
num_gt_dets = 0 | |
num_tracker_dets = 0 | |
for t in range(raw_data['num_timesteps']): | |
# Get all data | |
gt_ids = raw_data['gt_ids'][t] | |
gt_dets = raw_data['gt_dets'][t] | |
gt_classes = raw_data['gt_classes'][t] | |
gt_visibility = raw_data['visibility'][t] | |
gt_conf = raw_data['gt_conf'][t] | |
gt_zero_marked = raw_data['gt_extras'][t]['zero_marked'] | |
tracker_ids = raw_data['tracker_ids'][t] | |
tracker_dets = raw_data['tracker_dets'][t] | |
tracker_classes = raw_data['tracker_classes'][t] | |
tracker_confidences = raw_data['tracker_confidences'][t] | |
similarity_scores = raw_data['similarity_scores'][t] | |
# Evaluation is ONLY valid for pedestrian class | |
if len(tracker_classes) > 0 and np.max(tracker_classes) > 1: | |
raise TrackEvalException( | |
'Evaluation is only valid for pedestrian class. Non pedestrian class (%i) found in sequence %s at ' | |
'timestep %i.' % (np.max(tracker_classes), raw_data['seq'], t)) | |
# Match tracker and gt dets (with hungarian algorithm) and remove tracker dets which match with gt dets | |
# which are labeled as belonging to a distractor class. | |
to_remove_tracker = np.array([], np.int) | |
if self.do_preproc and self.benchmark != 'MOT15' and gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0: | |
# Check all classes are valid: | |
invalid_classes = np.setdiff1d(np.unique(gt_classes), self.valid_class_numbers) | |
if len(invalid_classes) > 0: | |
print(' '.join([str(x) for x in invalid_classes])) | |
raise(TrackEvalException('Attempting to evaluate using invalid gt classes. ' | |
'This warning only triggers if preprocessing is performed, ' | |
'e.g. not for MOT15 or where prepropressing is explicitly disabled. ' | |
'Please either check your gt data, or disable preprocessing. ' | |
'The following invalid classes were found in timestep ' + str(t) + ': ' + | |
' '.join([str(x) for x in invalid_classes]))) | |
matching_scores = similarity_scores.copy() | |
matching_scores[matching_scores < 0.4 - np.finfo('float').eps] = 0 | |
match_rows, match_cols = linear_sum_assignment(-matching_scores) | |
actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps | |
match_rows = match_rows[actually_matched_mask] | |
match_cols = match_cols[actually_matched_mask] | |
is_distractor_class = np.logical_not(np.isin(gt_classes[match_rows], cls_id)) | |
if self.benchmark == 'HT': | |
is_invisible_class = gt_visibility[match_rows] < np.finfo('float').eps | |
low_conf_class = gt_conf[match_rows] < np.finfo('float').eps | |
are_distractors = np.logical_or(is_invisible_class, is_distractor_class, low_conf_class) | |
to_remove_tracker = match_cols[are_distractors] | |
else: | |
to_remove_tracker = match_cols[is_distractor_class] | |
# Apply preprocessing to remove all unwanted tracker dets. | |
data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0) | |
data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0) | |
data['tracker_confidences'][t] = np.delete(tracker_confidences, to_remove_tracker, axis=0) | |
similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1) | |
# Remove gt detections marked as to remove (zero marked), and also remove gt detections not in pedestrian | |
if self.do_preproc and self.benchmark == 'HT': | |
gt_to_keep_mask = (np.not_equal(gt_zero_marked, 0)) & \ | |
(np.equal(gt_classes, cls_id)) & \ | |
(gt_visibility > 0.) & \ | |
(gt_conf > 0.) | |
else: | |
# There are no classes for MOT15 | |
gt_to_keep_mask = np.not_equal(gt_zero_marked, 0) | |
data['gt_ids'][t] = gt_ids[gt_to_keep_mask] | |
data['gt_dets'][t] = gt_dets[gt_to_keep_mask, :] | |
data['similarity_scores'][t] = similarity_scores[gt_to_keep_mask] | |
data['gt_visibility'][t] = gt_visibility # No mask! | |
unique_gt_ids += list(np.unique(data['gt_ids'][t])) | |
unique_tracker_ids += list(np.unique(data['tracker_ids'][t])) | |
num_tracker_dets += len(data['tracker_ids'][t]) | |
num_gt_dets += len(data['gt_ids'][t]) | |
# Re-label IDs such that there are no empty IDs | |
if len(unique_gt_ids) > 0: | |
unique_gt_ids = np.unique(unique_gt_ids) | |
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1)) | |
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids)) | |
for t in range(raw_data['num_timesteps']): | |
if len(data['gt_ids'][t]) > 0: | |
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int) | |
if len(unique_tracker_ids) > 0: | |
unique_tracker_ids = np.unique(unique_tracker_ids) | |
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1)) | |
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids)) | |
for t in range(raw_data['num_timesteps']): | |
if len(data['tracker_ids'][t]) > 0: | |
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int) | |
# Record overview statistics. | |
data['num_tracker_dets'] = num_tracker_dets | |
data['num_gt_dets'] = num_gt_dets | |
data['num_tracker_ids'] = len(unique_tracker_ids) | |
data['num_gt_ids'] = len(unique_gt_ids) | |
data['num_timesteps'] = raw_data['num_timesteps'] | |
data['seq'] = raw_data['seq'] | |
# Ensure again that ids are unique per timestep after preproc. | |
self._check_unique_ids(data, after_preproc=True) | |
return data | |
def _calculate_similarities(self, gt_dets_t, tracker_dets_t): | |
similarity_scores = self._calculate_box_ious(gt_dets_t, tracker_dets_t, box_format='xywh') | |
return similarity_scores | |