Spaces:
Build error
Build error
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license | |
""" | |
Train a YOLOv5 classifier model on a classification dataset | |
Usage - Single-GPU training: | |
$ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224 | |
Usage - Multi-GPU DDP training: | |
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3 | |
Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data' | |
YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt | |
Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html | |
""" | |
import argparse | |
import os | |
import subprocess | |
import sys | |
import time | |
from copy import deepcopy | |
from datetime import datetime | |
from pathlib import Path | |
import torch | |
import torch.distributed as dist | |
import torch.hub as hub | |
import torch.optim.lr_scheduler as lr_scheduler | |
import torchvision | |
from torch.cuda import amp | |
from tqdm import tqdm | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[1] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
from classify import val as validate | |
from models.experimental import attempt_load | |
from models.yolo import ClassificationModel, DetectionModel | |
from utils.dataloaders import create_classification_dataloader | |
from utils.general import (DATASETS_DIR, LOGGER, TQDM_BAR_FORMAT, WorkingDirectory, check_git_info, check_git_status, | |
check_requirements, colorstr, download, increment_path, init_seeds, print_args, yaml_save) | |
from utils.loggers import GenericLogger | |
from utils.plots import imshow_cls | |
from utils.torch_utils import (ModelEMA, de_parallel, model_info, reshape_classifier_output, select_device, smart_DDP, | |
smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first) | |
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html | |
RANK = int(os.getenv('RANK', -1)) | |
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) | |
GIT_INFO = check_git_info() | |
def train(opt, device): | |
init_seeds(opt.seed + 1 + RANK, deterministic=True) | |
save_dir, data, bs, epochs, nw, imgsz, pretrained = \ | |
opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \ | |
opt.imgsz, str(opt.pretrained).lower() == 'true' | |
cuda = device.type != 'cpu' | |
# Directories | |
wdir = save_dir / 'weights' | |
wdir.mkdir(parents=True, exist_ok=True) # make dir | |
last, best = wdir / 'last.pt', wdir / 'best.pt' | |
# Save run settings | |
yaml_save(save_dir / 'opt.yaml', vars(opt)) | |
# Logger | |
logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None | |
# Download Dataset | |
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT): | |
data_dir = data if data.is_dir() else (DATASETS_DIR / data) | |
if not data_dir.is_dir(): | |
LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...') | |
t = time.time() | |
if str(data) == 'imagenet': | |
subprocess.run(['bash', str(ROOT / 'data/scripts/get_imagenet.sh')], shell=True, check=True) | |
else: | |
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip' | |
download(url, dir=data_dir.parent) | |
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n" | |
LOGGER.info(s) | |
# Dataloaders | |
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes | |
trainloader = create_classification_dataloader(path=data_dir / 'train', | |
imgsz=imgsz, | |
batch_size=bs // WORLD_SIZE, | |
augment=True, | |
cache=opt.cache, | |
rank=LOCAL_RANK, | |
workers=nw) | |
test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val | |
if RANK in {-1, 0}: | |
testloader = create_classification_dataloader(path=test_dir, | |
imgsz=imgsz, | |
batch_size=bs // WORLD_SIZE * 2, | |
augment=False, | |
cache=opt.cache, | |
rank=-1, | |
workers=nw) | |
# Model | |
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT): | |
if Path(opt.model).is_file() or opt.model.endswith('.pt'): | |
model = attempt_load(opt.model, device='cpu', fuse=False) | |
elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0 | |
model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None) | |
else: | |
m = hub.list('ultralytics/yolov5') # + hub.list('pytorch/vision') # models | |
raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m)) | |
if isinstance(model, DetectionModel): | |
LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'") | |
model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model | |
reshape_classifier_output(model, nc) # update class count | |
for m in model.modules(): | |
if not pretrained and hasattr(m, 'reset_parameters'): | |
m.reset_parameters() | |
if isinstance(m, torch.nn.Dropout) and opt.dropout is not None: | |
m.p = opt.dropout # set dropout | |
for p in model.parameters(): | |
p.requires_grad = True # for training | |
model = model.to(device) | |
# Info | |
if RANK in {-1, 0}: | |
model.names = trainloader.dataset.classes # attach class names | |
model.transforms = testloader.dataset.torch_transforms # attach inference transforms | |
model_info(model) | |
if opt.verbose: | |
LOGGER.info(model) | |
images, labels = next(iter(trainloader)) | |
file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / 'train_images.jpg') | |
logger.log_images(file, name='Train Examples') | |
logger.log_graph(model, imgsz) # log model | |
# Optimizer | |
optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay) | |
# Scheduler | |
lrf = 0.01 # final lr (fraction of lr0) | |
# lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine | |
lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear | |
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) | |
# scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1, | |
# final_div_factor=1 / 25 / lrf) | |
# EMA | |
ema = ModelEMA(model) if RANK in {-1, 0} else None | |
# DDP mode | |
if cuda and RANK != -1: | |
model = smart_DDP(model) | |
# Train | |
t0 = time.time() | |
criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function | |
best_fitness = 0.0 | |
scaler = amp.GradScaler(enabled=cuda) | |
val = test_dir.stem # 'val' or 'test' | |
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n' | |
f'Using {nw * WORLD_SIZE} dataloader workers\n' | |
f"Logging results to {colorstr('bold', save_dir)}\n" | |
f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n' | |
f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}") | |
for epoch in range(epochs): # loop over the dataset multiple times | |
tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness | |
model.train() | |
if RANK != -1: | |
trainloader.sampler.set_epoch(epoch) | |
pbar = enumerate(trainloader) | |
if RANK in {-1, 0}: | |
pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT) | |
for i, (images, labels) in pbar: # progress bar | |
images, labels = images.to(device, non_blocking=True), labels.to(device) | |
# Forward | |
with amp.autocast(enabled=cuda): # stability issues when enabled | |
loss = criterion(model(images), labels) | |
# Backward | |
scaler.scale(loss).backward() | |
# Optimize | |
scaler.unscale_(optimizer) # unscale gradients | |
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients | |
scaler.step(optimizer) | |
scaler.update() | |
optimizer.zero_grad() | |
if ema: | |
ema.update(model) | |
if RANK in {-1, 0}: | |
tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses | |
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) | |
pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36 | |
# Test | |
if i == len(pbar) - 1: # last batch | |
top1, top5, vloss = validate.run(model=ema.ema, | |
dataloader=testloader, | |
criterion=criterion, | |
pbar=pbar) # test accuracy, loss | |
fitness = top1 # define fitness as top1 accuracy | |
# Scheduler | |
scheduler.step() | |
# Log metrics | |
if RANK in {-1, 0}: | |
# Best fitness | |
if fitness > best_fitness: | |
best_fitness = fitness | |
# Log | |
metrics = { | |
'train/loss': tloss, | |
f'{val}/loss': vloss, | |
'metrics/accuracy_top1': top1, | |
'metrics/accuracy_top5': top5, | |
'lr/0': optimizer.param_groups[0]['lr']} # learning rate | |
logger.log_metrics(metrics, epoch) | |
# Save model | |
final_epoch = epoch + 1 == epochs | |
if (not opt.nosave) or final_epoch: | |
ckpt = { | |
'epoch': epoch, | |
'best_fitness': best_fitness, | |
'model': deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(), | |
'ema': None, # deepcopy(ema.ema).half(), | |
'updates': ema.updates, | |
'optimizer': None, # optimizer.state_dict(), | |
'opt': vars(opt), | |
'git': GIT_INFO, # {remote, branch, commit} if a git repo | |
'date': datetime.now().isoformat()} | |
# Save last, best and delete | |
torch.save(ckpt, last) | |
if best_fitness == fitness: | |
torch.save(ckpt, best) | |
del ckpt | |
# Train complete | |
if RANK in {-1, 0} and final_epoch: | |
LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)' | |
f"\nResults saved to {colorstr('bold', save_dir)}" | |
f'\nPredict: python classify/predict.py --weights {best} --source im.jpg' | |
f'\nValidate: python classify/val.py --weights {best} --data {data_dir}' | |
f'\nExport: python export.py --weights {best} --include onnx' | |
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')" | |
f'\nVisualize: https://netron.app\n') | |
# Plot examples | |
images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels | |
pred = torch.max(ema.ema(images.to(device)), 1)[1] | |
file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / 'test_images.jpg') | |
# Log results | |
meta = {'epochs': epochs, 'top1_acc': best_fitness, 'date': datetime.now().isoformat()} | |
logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch) | |
logger.log_model(best, epochs, metadata=meta) | |
def parse_opt(known=False): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path') | |
parser.add_argument('--data', type=str, default='imagenette160', help='cifar10, cifar100, mnist, imagenet, ...') | |
parser.add_argument('--epochs', type=int, default=10, help='total training epochs') | |
parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs') | |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)') | |
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') | |
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') | |
parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name') | |
parser.add_argument('--name', default='exp', help='save to project/name') | |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | |
parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False') | |
parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer') | |
parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate') | |
parser.add_argument('--decay', type=float, default=5e-5, help='weight decay') | |
parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon') | |
parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head') | |
parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)') | |
parser.add_argument('--verbose', action='store_true', help='Verbose mode') | |
parser.add_argument('--seed', type=int, default=0, help='Global training seed') | |
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') | |
return parser.parse_known_args()[0] if known else parser.parse_args() | |
def main(opt): | |
# Checks | |
if RANK in {-1, 0}: | |
print_args(vars(opt)) | |
check_git_status() | |
check_requirements() | |
# DDP mode | |
device = select_device(opt.device, batch_size=opt.batch_size) | |
if LOCAL_RANK != -1: | |
assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size' | |
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' | |
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' | |
torch.cuda.set_device(LOCAL_RANK) | |
device = torch.device('cuda', LOCAL_RANK) | |
dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo') | |
# Parameters | |
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run | |
# Train | |
train(opt, device) | |
def run(**kwargs): | |
# Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m') | |
opt = parse_opt(True) | |
for k, v in kwargs.items(): | |
setattr(opt, k, v) | |
main(opt) | |
return opt | |
if __name__ == '__main__': | |
opt = parse_opt() | |
main(opt) | |