Spaces:
Build error
Build error
/////////////// Header.proto /////////////// | |
//@proto_block: h_code | |
/////////////// RealImag.proto /////////////// | |
/////////////// Declarations.proto /////////////// | |
//@proto_block: complex_type_declarations | |
typedef ::std::complex< {{real_type}} > {{type_name}}; | |
typedef {{real_type}} _Complex {{type_name}}; | |
typedef struct { {{real_type}} real, imag; } {{type_name}}; | |
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}}, {{real_type}}); | |
/////////////// Declarations /////////////// | |
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) { | |
return ::std::complex< {{real_type}} >(x, y); | |
} | |
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) { | |
return x + y*({{type}})_Complex_I; | |
} | |
static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) { | |
{{type}} z; | |
z.real = x; | |
z.imag = y; | |
return z; | |
} | |
/////////////// ToPy.proto /////////////// | |
/////////////// FromPy.proto /////////////// | |
static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject*); | |
/////////////// FromPy /////////////// | |
static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) { | |
Py_complex cval; | |
if (PyComplex_CheckExact(o)) | |
cval = ((PyComplexObject *)o)->cval; | |
else | |
cval = PyComplex_AsCComplex(o); | |
return {{type_name}}_from_parts( | |
({{real_type}})cval.real, | |
({{real_type}})cval.imag); | |
} | |
/////////////// Arithmetic.proto /////////////// | |
static CYTHON_INLINE int __Pyx_c_eq{{func_suffix}}({{type}}, {{type}}); | |
static CYTHON_INLINE {{type}} __Pyx_c_sum{{func_suffix}}({{type}}, {{type}}); | |
static CYTHON_INLINE {{type}} __Pyx_c_diff{{func_suffix}}({{type}}, {{type}}); | |
static CYTHON_INLINE {{type}} __Pyx_c_prod{{func_suffix}}({{type}}, {{type}}); | |
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}}, {{type}}); | |
static CYTHON_INLINE {{type}} __Pyx_c_neg{{func_suffix}}({{type}}); | |
static CYTHON_INLINE int __Pyx_c_is_zero{{func_suffix}}({{type}}); | |
static CYTHON_INLINE {{type}} __Pyx_c_conj{{func_suffix}}({{type}}); | |
static CYTHON_INLINE {{real_type}} __Pyx_c_abs{{func_suffix}}({{type}}); | |
static CYTHON_INLINE {{type}} __Pyx_c_pow{{func_suffix}}({{type}}, {{type}}); | |
/////////////// Arithmetic /////////////// | |
static CYTHON_INLINE int __Pyx_c_eq{{func_suffix}}({{type}} a, {{type}} b) { | |
return (a.real == b.real) && (a.imag == b.imag); | |
} | |
static CYTHON_INLINE {{type}} __Pyx_c_sum{{func_suffix}}({{type}} a, {{type}} b) { | |
{{type}} z; | |
z.real = a.real + b.real; | |
z.imag = a.imag + b.imag; | |
return z; | |
} | |
static CYTHON_INLINE {{type}} __Pyx_c_diff{{func_suffix}}({{type}} a, {{type}} b) { | |
{{type}} z; | |
z.real = a.real - b.real; | |
z.imag = a.imag - b.imag; | |
return z; | |
} | |
static CYTHON_INLINE {{type}} __Pyx_c_prod{{func_suffix}}({{type}} a, {{type}} b) { | |
{{type}} z; | |
z.real = a.real * b.real - a.imag * b.imag; | |
z.imag = a.real * b.imag + a.imag * b.real; | |
return z; | |
} | |
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}} a, {{type}} b) { | |
if (b.imag == 0) { | |
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.real); | |
} else if (fabs{{m}}(b.real) >= fabs{{m}}(b.imag)) { | |
if (b.real == 0 && b.imag == 0) { | |
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.imag); | |
} else { | |
{{real_type}} r = b.imag / b.real; | |
{{real_type}} s = ({{real_type}})(1.0) / (b.real + b.imag * r); | |
return {{type_name}}_from_parts( | |
(a.real + a.imag * r) * s, (a.imag - a.real * r) * s); | |
} | |
} else { | |
{{real_type}} r = b.real / b.imag; | |
{{real_type}} s = ({{real_type}})(1.0) / (b.imag + b.real * r); | |
return {{type_name}}_from_parts( | |
(a.real * r + a.imag) * s, (a.imag * r - a.real) * s); | |
} | |
} | |
static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}} a, {{type}} b) { | |
if (b.imag == 0) { | |
return {{type_name}}_from_parts(a.real / b.real, a.imag / b.real); | |
} else { | |
{{real_type}} denom = b.real * b.real + b.imag * b.imag; | |
return {{type_name}}_from_parts( | |
(a.real * b.real + a.imag * b.imag) / denom, | |
(a.imag * b.real - a.real * b.imag) / denom); | |
} | |
} | |
static CYTHON_INLINE {{type}} __Pyx_c_neg{{func_suffix}}({{type}} a) { | |
{{type}} z; | |
z.real = -a.real; | |
z.imag = -a.imag; | |
return z; | |
} | |
static CYTHON_INLINE int __Pyx_c_is_zero{{func_suffix}}({{type}} a) { | |
return (a.real == 0) && (a.imag == 0); | |
} | |
static CYTHON_INLINE {{type}} __Pyx_c_conj{{func_suffix}}({{type}} a) { | |
{{type}} z; | |
z.real = a.real; | |
z.imag = -a.imag; | |
return z; | |
} | |
static CYTHON_INLINE {{real_type}} __Pyx_c_abs{{func_suffix}}({{type}} z) { | |
return sqrt{{m}}(z.real*z.real + z.imag*z.imag); | |
return hypot{{m}}(z.real, z.imag); | |
} | |
static CYTHON_INLINE {{type}} __Pyx_c_pow{{func_suffix}}({{type}} a, {{type}} b) { | |
{{type}} z; | |
{{real_type}} r, lnr, theta, z_r, z_theta; | |
if (b.imag == 0 && b.real == (int)b.real) { | |
if (b.real < 0) { | |
{{real_type}} denom = a.real * a.real + a.imag * a.imag; | |
a.real = a.real / denom; | |
a.imag = -a.imag / denom; | |
b.real = -b.real; | |
} | |
switch ((int)b.real) { | |
case 0: | |
z.real = 1; | |
z.imag = 0; | |
return z; | |
case 1: | |
return a; | |
case 2: | |
return __Pyx_c_prod{{func_suffix}}(a, a); | |
case 3: | |
z = __Pyx_c_prod{{func_suffix}}(a, a); | |
return __Pyx_c_prod{{func_suffix}}(z, a); | |
case 4: | |
z = __Pyx_c_prod{{func_suffix}}(a, a); | |
return __Pyx_c_prod{{func_suffix}}(z, z); | |
} | |
} | |
if (a.imag == 0) { | |
if (a.real == 0) { | |
return a; | |
} else if (b.imag == 0) { | |
z.real = pow{{m}}(a.real, b.real); | |
z.imag = 0; | |
return z; | |
} else if (a.real > 0) { | |
r = a.real; | |
theta = 0; | |
} else { | |
r = -a.real; | |
theta = atan2{{m}}(0.0, -1.0); | |
} | |
} else { | |
r = __Pyx_c_abs{{func_suffix}}(a); | |
theta = atan2{{m}}(a.imag, a.real); | |
} | |
lnr = log{{m}}(r); | |
z_r = exp{{m}}(lnr * b.real - theta * b.imag); | |
z_theta = theta * b.real + lnr * b.imag; | |
z.real = z_r * cos{{m}}(z_theta); | |
z.imag = z_r * sin{{m}}(z_theta); | |
return z; | |
} | |