xfys's picture
Upload 645 files
47af768
""" run_burst.py
The example commands given below expect the following folder structure:
- data
- gt
- burst
- {val,test}
- all_classes
- all_classes.json (filename is irrelevant)
- trackers
- burst
- exemplar_guided
- {val,test}
- my_tracking_method
- data
- results.json (filename is irrelevant)
- class_guided
- {val,test}
- my_other_tracking_method
- data
- results.json (filename is irrelevant)
Run example:
1) Exemplar-guided tasks (all three tasks share the same eval logic):
run_burst.py --USE_PARALLEL True --EXEMPLAR_GUIDED True --GT_FOLDER ../data/gt/burst/{val,test}/all_classes --TRACKERS_FOLDER ../data/trackers/burst/exemplar_guided/{val,test}
2) Class-guided tasks (common class and long-tail):
run_burst.py --USE_PARALLEL FTrue --EXEMPLAR_GUIDED False --GT_FOLDER ../data/gt/burst/{val,test}/all_classes --TRACKERS_FOLDER ../data/trackers/burst/class_guided/{val,test}
3) Refer to run_burst_ow.py for open world evaluation
Command Line Arguments: Defaults, # Comments
Eval arguments:
'USE_PARALLEL': False,
'NUM_PARALLEL_CORES': 8,
'BREAK_ON_ERROR': True,
'PRINT_RESULTS': True,
'PRINT_ONLY_COMBINED': False,
'PRINT_CONFIG': True,
'TIME_PROGRESS': True,
'OUTPUT_SUMMARY': True,
'OUTPUT_DETAILED': True,
'PLOT_CURVES': True,
Dataset arguments:
'GT_FOLDER': os.path.join(code_path, 'data/gt/burst/val'), # Location of GT data
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/burst/class-guided/'), # Trackers location
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER)
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder)
'CLASSES_TO_EVAL': None, # Classes to eval (if None, all classes)
'SPLIT_TO_EVAL': 'training', # Valid: 'training', 'val'
'PRINT_CONFIG': True, # Whether to print current config
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL
'MAX_DETECTIONS': 300, # Number of maximal allowed detections per image (0 for unlimited)
Metric arguments:
'METRICS': ['HOTA', 'CLEAR', 'Identity', 'TrackMAP']
"""
import sys
import os
import argparse
from tabulate import tabulate
from multiprocessing import freeze_support
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import trackeval # noqa: E402
def main():
freeze_support()
# Command line interface:
default_eval_config = trackeval.Evaluator.get_default_eval_config()
default_eval_config['PRINT_ONLY_COMBINED'] = True
default_eval_config['DISPLAY_LESS_PROGRESS'] = True
default_eval_config['PLOT_CURVES'] = False
default_eval_config["OUTPUT_DETAILED"] = False
default_eval_config["PRINT_RESULTS"] = False
default_eval_config["OUTPUT_SUMMARY"] = False
default_dataset_config = trackeval.datasets.BURST.get_default_dataset_config()
# default_metrics_config = {'METRICS': ['HOTA', 'CLEAR', 'Identity', 'TrackMAP']}
# default_metrics_config = {'METRICS': ['HOTA']}
default_metrics_config = {'METRICS': ['HOTA', 'TrackMAP']}
config = {**default_eval_config, **default_dataset_config, **default_metrics_config} # Merge default configs
parser = argparse.ArgumentParser()
for setting in config.keys():
if type(config[setting]) == list or type(config[setting]) == type(None):
parser.add_argument("--" + setting, nargs='+')
else:
parser.add_argument("--" + setting)
args = parser.parse_args().__dict__
for setting in args.keys():
if args[setting] is not None:
if type(config[setting]) == type(True):
if args[setting] == 'True':
x = True
elif args[setting] == 'False':
x = False
else:
raise Exception('Command line parameter ' + setting + 'must be True or False')
elif type(config[setting]) == type(1):
x = int(args[setting])
elif type(args[setting]) == type(None):
x = None
else:
x = args[setting]
config[setting] = x
eval_config = {k: v for k, v in config.items() if k in default_eval_config.keys()}
dataset_config = {k: v for k, v in config.items() if k in default_dataset_config.keys()}
metrics_config = {k: v for k, v in config.items() if k in default_metrics_config.keys()}
# Run code
evaluator = trackeval.Evaluator(eval_config)
dataset_list = [trackeval.datasets.BURST(dataset_config)]
metrics_list = []
for metric in [trackeval.metrics.TrackMAP, trackeval.metrics.CLEAR, trackeval.metrics.Identity,
trackeval.metrics.HOTA]:
if metric.get_name() in metrics_config['METRICS']:
metrics_list.append(metric())
if len(metrics_list) == 0:
raise Exception('No metrics selected for evaluation')
output_res, output_msg = evaluator.evaluate(dataset_list, metrics_list, show_progressbar=True)
class_name_to_id = {x['name']: x['id'] for x in dataset_list[0].gt_data['categories']}
known_list = [4, 13, 1038, 544, 1057, 34, 35, 36, 41, 45, 58, 60, 579, 1091, 1097, 1099, 78, 79, 81, 91, 1115,
1117, 95, 1122, 99, 1132, 621, 1135, 625, 118, 1144, 126, 642, 1155, 133, 1162, 139, 154, 174, 185,
699, 1215, 714, 717, 1229, 211, 729, 221, 229, 747, 235, 237, 779, 276, 805, 299, 829, 852, 347,
371, 382, 896, 392, 926, 937, 428, 429, 961, 452, 979, 980, 982, 475, 480, 993, 1001, 502, 1018]
row_labels = ("HOTA", "DetA", "AssA", "AP")
trackers = list(output_res['BURST'].keys())
print("\n")
def average_metric(m):
return round(100*sum(m) / len(m), 2)
for tracker in trackers:
res = output_res['BURST'][tracker]['COMBINED_SEQ']
all_names = [x for x in res.keys() if (x != 'cls_comb_cls_av') and (x != 'cls_comb_det_av')]
class_split_names = {
"All": [x for x in res.keys() if (x != 'cls_comb_cls_av') and (x != 'cls_comb_det_av')],
"Common": [x for x in all_names if class_name_to_id[x] in known_list],
"Uncommon": [x for x in all_names if class_name_to_id[x] not in known_list]
}
# table columns: 'all', 'common', 'uncommon'
# table rows: HOTA, AssA, DetA, mAP
table_data = []
for row_label in row_labels:
row = [row_label]
for split_name in ["All", "Common", "Uncommon"]:
split_classes = class_split_names[split_name]
if row_label == "AP":
row.append(average_metric([res[c]['TrackMAP']["AP_all"].mean() for c in split_classes]))
else:
row.append(average_metric([res[c]['HOTA'][row_label].mean() for c in split_classes]))
table_data.append(row)
print(f"Results for Tracker: {tracker}\n")
print(tabulate(table_data, ["Metric", "All", "Common", "Uncommon"]))
if __name__ == '__main__':
main()