xfys's picture
Upload 645 files
47af768
import time
import traceback
from multiprocessing.pool import Pool
from functools import partial
import os
from . import utils
from .utils import TrackEvalException
from . import _timing
from .metrics import Count
try:
import tqdm
TQDM_IMPORTED = True
except ImportError as _:
TQDM_IMPORTED = False
class Evaluator:
"""Evaluator class for evaluating different metrics for different datasets"""
@staticmethod
def get_default_eval_config():
"""Returns the default config values for evaluation"""
code_path = utils.get_code_path()
default_config = {
'USE_PARALLEL': False,
'NUM_PARALLEL_CORES': 8,
'BREAK_ON_ERROR': True, # Raises exception and exits with error
'RETURN_ON_ERROR': False, # if not BREAK_ON_ERROR, then returns from function on error
'LOG_ON_ERROR': os.path.join(code_path, 'error_log.txt'), # if not None, save any errors into a log file.
'PRINT_RESULTS': True,
'PRINT_ONLY_COMBINED': False,
'PRINT_CONFIG': True,
'TIME_PROGRESS': True,
'DISPLAY_LESS_PROGRESS': True,
'OUTPUT_SUMMARY': True,
'OUTPUT_EMPTY_CLASSES': True, # If False, summary files are not output for classes with no detections
'OUTPUT_DETAILED': True,
'PLOT_CURVES': True,
}
return default_config
def __init__(self, config=None):
"""Initialise the evaluator with a config file"""
self.config = utils.init_config(config, self.get_default_eval_config(), 'Eval')
# Only run timing analysis if not run in parallel.
if self.config['TIME_PROGRESS'] and not self.config['USE_PARALLEL']:
_timing.DO_TIMING = True
if self.config['DISPLAY_LESS_PROGRESS']:
_timing.DISPLAY_LESS_PROGRESS = True
@_timing.time
def evaluate(self, dataset_list, metrics_list, show_progressbar=False):
"""Evaluate a set of metrics on a set of datasets"""
config = self.config
metrics_list = metrics_list + [Count()] # Count metrics are always run
metric_names = utils.validate_metrics_list(metrics_list)
dataset_names = [dataset.get_name() for dataset in dataset_list]
output_res = {}
output_msg = {}
for dataset, dataset_name in zip(dataset_list, dataset_names):
# Get dataset info about what to evaluate
output_res[dataset_name] = {}
output_msg[dataset_name] = {}
tracker_list, seq_list, class_list = dataset.get_eval_info()
print('\nEvaluating %i tracker(s) on %i sequence(s) for %i class(es) on %s dataset using the following '
'metrics: %s\n' % (len(tracker_list), len(seq_list), len(class_list), dataset_name,
', '.join(metric_names)))
# Evaluate each tracker
for tracker in tracker_list:
# if not config['BREAK_ON_ERROR'] then go to next tracker without breaking
try:
# Evaluate each sequence in parallel or in series.
# returns a nested dict (res), indexed like: res[seq][class][metric_name][sub_metric field]
# e.g. res[seq_0001][pedestrian][hota][DetA]
print('\nEvaluating %s\n' % tracker)
time_start = time.time()
if config['USE_PARALLEL']:
if show_progressbar and TQDM_IMPORTED:
seq_list_sorted = sorted(seq_list)
with Pool(config['NUM_PARALLEL_CORES']) as pool, tqdm.tqdm(total=len(seq_list)) as pbar:
_eval_sequence = partial(eval_sequence, dataset=dataset, tracker=tracker,
class_list=class_list, metrics_list=metrics_list,
metric_names=metric_names)
results = []
for r in pool.imap(_eval_sequence, seq_list_sorted,
chunksize=20):
results.append(r)
pbar.update()
res = dict(zip(seq_list_sorted, results))
else:
with Pool(config['NUM_PARALLEL_CORES']) as pool:
_eval_sequence = partial(eval_sequence, dataset=dataset, tracker=tracker,
class_list=class_list, metrics_list=metrics_list,
metric_names=metric_names)
results = pool.map(_eval_sequence, seq_list)
res = dict(zip(seq_list, results))
else:
res = {}
if show_progressbar and TQDM_IMPORTED:
seq_list_sorted = sorted(seq_list)
for curr_seq in tqdm.tqdm(seq_list_sorted):
res[curr_seq] = eval_sequence(curr_seq, dataset, tracker, class_list, metrics_list,
metric_names)
else:
for curr_seq in sorted(seq_list):
res[curr_seq] = eval_sequence(curr_seq, dataset, tracker, class_list, metrics_list,
metric_names)
# Combine results over all sequences and then over all classes
# collecting combined cls keys (cls averaged, det averaged, super classes)
combined_cls_keys = []
res['COMBINED_SEQ'] = {}
# combine sequences for each class
for c_cls in class_list:
res['COMBINED_SEQ'][c_cls] = {}
for metric, metric_name in zip(metrics_list, metric_names):
curr_res = {seq_key: seq_value[c_cls][metric_name] for seq_key, seq_value in res.items() if
seq_key != 'COMBINED_SEQ'}
res['COMBINED_SEQ'][c_cls][metric_name] = metric.combine_sequences(curr_res)
# combine classes
if dataset.should_classes_combine:
combined_cls_keys += ['cls_comb_cls_av', 'cls_comb_det_av', 'all']
res['COMBINED_SEQ']['cls_comb_cls_av'] = {}
res['COMBINED_SEQ']['cls_comb_det_av'] = {}
for metric, metric_name in zip(metrics_list, metric_names):
cls_res = {cls_key: cls_value[metric_name] for cls_key, cls_value in
res['COMBINED_SEQ'].items() if cls_key not in combined_cls_keys}
res['COMBINED_SEQ']['cls_comb_cls_av'][metric_name] = \
metric.combine_classes_class_averaged(cls_res)
res['COMBINED_SEQ']['cls_comb_det_av'][metric_name] = \
metric.combine_classes_det_averaged(cls_res)
# combine classes to super classes
if dataset.use_super_categories:
for cat, sub_cats in dataset.super_categories.items():
combined_cls_keys.append(cat)
res['COMBINED_SEQ'][cat] = {}
for metric, metric_name in zip(metrics_list, metric_names):
cat_res = {cls_key: cls_value[metric_name] for cls_key, cls_value in
res['COMBINED_SEQ'].items() if cls_key in sub_cats}
res['COMBINED_SEQ'][cat][metric_name] = metric.combine_classes_det_averaged(cat_res)
# Print and output results in various formats
if config['TIME_PROGRESS']:
print('\nAll sequences for %s finished in %.2f seconds' % (tracker, time.time() - time_start))
output_fol = dataset.get_output_fol(tracker)
tracker_display_name = dataset.get_display_name(tracker)
for c_cls in res['COMBINED_SEQ'].keys(): # class_list + combined classes if calculated
summaries = []
details = []
num_dets = res['COMBINED_SEQ'][c_cls]['Count']['Dets']
if config['OUTPUT_EMPTY_CLASSES'] or num_dets > 0:
for metric, metric_name in zip(metrics_list, metric_names):
# for combined classes there is no per sequence evaluation
if c_cls in combined_cls_keys:
table_res = {'COMBINED_SEQ': res['COMBINED_SEQ'][c_cls][metric_name]}
else:
table_res = {seq_key: seq_value[c_cls][metric_name] for seq_key, seq_value
in res.items()}
if config['PRINT_RESULTS'] and config['PRINT_ONLY_COMBINED']:
dont_print = dataset.should_classes_combine and c_cls not in combined_cls_keys
if not dont_print:
metric.print_table({'COMBINED_SEQ': table_res['COMBINED_SEQ']},
tracker_display_name, c_cls)
elif config['PRINT_RESULTS']:
metric.print_table(table_res, tracker_display_name, c_cls)
if config['OUTPUT_SUMMARY']:
summaries.append(metric.summary_results(table_res))
if config['OUTPUT_DETAILED']:
details.append(metric.detailed_results(table_res))
if config['PLOT_CURVES']:
metric.plot_single_tracker_results(table_res, tracker_display_name, c_cls,
output_fol)
if config['OUTPUT_SUMMARY']:
utils.write_summary_results(summaries, c_cls, output_fol)
if config['OUTPUT_DETAILED']:
utils.write_detailed_results(details, c_cls, output_fol)
# Output for returning from function
output_res[dataset_name][tracker] = res
output_msg[dataset_name][tracker] = 'Success'
except Exception as err:
output_res[dataset_name][tracker] = None
if type(err) == TrackEvalException:
output_msg[dataset_name][tracker] = str(err)
else:
output_msg[dataset_name][tracker] = 'Unknown error occurred.'
print('Tracker %s was unable to be evaluated.' % tracker)
print(err)
traceback.print_exc()
if config['LOG_ON_ERROR'] is not None:
with open(config['LOG_ON_ERROR'], 'a') as f:
print(dataset_name, file=f)
print(tracker, file=f)
print(traceback.format_exc(), file=f)
print('\n\n\n', file=f)
if config['BREAK_ON_ERROR']:
raise err
elif config['RETURN_ON_ERROR']:
return output_res, output_msg
return output_res, output_msg
@_timing.time
def eval_sequence(seq, dataset, tracker, class_list, metrics_list, metric_names):
"""Function for evaluating a single sequence"""
raw_data = dataset.get_raw_seq_data(tracker, seq)
seq_res = {}
for cls in class_list:
seq_res[cls] = {}
data = dataset.get_preprocessed_seq_data(raw_data, cls)
for metric, met_name in zip(metrics_list, metric_names):
seq_res[cls][met_name] = metric.eval_sequence(data)
return seq_res