Spaces:
Build error
Build error
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license | |
""" | |
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit | |
Format | `export.py --include` | Model | |
--- | --- | --- | |
PyTorch | - | yolov5s.pt | |
TorchScript | `torchscript` | yolov5s.torchscript | |
ONNX | `onnx` | yolov5s.onnx | |
OpenVINO | `openvino` | yolov5s_openvino_model/ | |
TensorRT | `engine` | yolov5s.engine | |
CoreML | `coreml` | yolov5s.mlmodel | |
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ | |
TensorFlow GraphDef | `pb` | yolov5s.pb | |
TensorFlow Lite | `tflite` | yolov5s.tflite | |
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite | |
TensorFlow.js | `tfjs` | yolov5s_web_model/ | |
PaddlePaddle | `paddle` | yolov5s_paddle_model/ | |
Requirements: | |
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU | |
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU | |
Usage: | |
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ... | |
Inference: | |
$ python detect.py --weights yolov5s.pt # PyTorch | |
yolov5s.torchscript # TorchScript | |
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
yolov5s_openvino_model # OpenVINO | |
yolov5s.engine # TensorRT | |
yolov5s.mlmodel # CoreML (macOS-only) | |
yolov5s_saved_model # TensorFlow SavedModel | |
yolov5s.pb # TensorFlow GraphDef | |
yolov5s.tflite # TensorFlow Lite | |
yolov5s_edgetpu.tflite # TensorFlow Edge TPU | |
yolov5s_paddle_model # PaddlePaddle | |
TensorFlow.js: | |
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example | |
$ npm install | |
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model | |
$ npm start | |
""" | |
import argparse | |
import contextlib | |
import json | |
import os | |
import platform | |
import re | |
import subprocess | |
import sys | |
import time | |
import warnings | |
from pathlib import Path | |
import pandas as pd | |
import torch | |
from torch.utils.mobile_optimizer import optimize_for_mobile | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[0] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
if platform.system() != 'Windows': | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
from yolov5.models.experimental import attempt_load | |
from yolov5.models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel | |
from yolov5.utils.dataloaders import LoadImages | |
from yolov5.utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version, | |
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save) | |
from yolov5.utils.torch_utils import select_device, smart_inference_mode | |
MACOS = platform.system() == 'Darwin' # macOS environment | |
class iOSModel(torch.nn.Module): | |
def __init__(self, model, im): | |
super().__init__() | |
b, c, h, w = im.shape # batch, channel, height, width | |
self.model = model | |
self.nc = model.nc # number of classes | |
if w == h: | |
self.normalize = 1. / w | |
else: | |
self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]) # broadcast (slower, smaller) | |
# np = model(im)[0].shape[1] # number of points | |
# self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4) # explicit (faster, larger) | |
def forward(self, x): | |
xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1) | |
return cls * conf, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4) | |
def export_formats(): | |
# YOLOv5 export formats | |
x = [ | |
['PyTorch', '-', '.pt', True, True], | |
['TorchScript', 'torchscript', '.torchscript', True, True], | |
['ONNX', 'onnx', '.onnx', True, True], | |
['OpenVINO', 'openvino', '_openvino_model', True, False], | |
['TensorRT', 'engine', '.engine', False, True], | |
['CoreML', 'coreml', '.mlmodel', True, False], | |
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True], | |
['TensorFlow GraphDef', 'pb', '.pb', True, True], | |
['TensorFlow Lite', 'tflite', '.tflite', True, False], | |
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False], | |
['TensorFlow.js', 'tfjs', '_web_model', False, False], | |
['PaddlePaddle', 'paddle', '_paddle_model', True, True],] | |
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU']) | |
def try_export(inner_func): | |
# YOLOv5 export decorator, i..e @try_export | |
inner_args = get_default_args(inner_func) | |
def outer_func(*args, **kwargs): | |
prefix = inner_args['prefix'] | |
try: | |
with Profile() as dt: | |
f, model = inner_func(*args, **kwargs) | |
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)') | |
return f, model | |
except Exception as e: | |
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}') | |
return None, None | |
return outer_func | |
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): | |
# YOLOv5 TorchScript model export | |
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') | |
f = file.with_suffix('.torchscript') | |
ts = torch.jit.trace(model, im, strict=False) | |
d = {'shape': im.shape, 'stride': int(max(model.stride)), 'names': model.names} | |
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() | |
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html | |
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) | |
else: | |
ts.save(str(f), _extra_files=extra_files) | |
return f, None | |
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')): | |
# YOLOv5 ONNX export | |
check_requirements('onnx>=1.12.0') | |
import onnx | |
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') | |
f = file.with_suffix('.onnx') | |
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0'] | |
if dynamic: | |
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640) | |
if isinstance(model, SegmentationModel): | |
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) | |
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160) | |
elif isinstance(model, DetectionModel): | |
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) | |
torch.onnx.export( | |
model.cpu() if dynamic else model, # --dynamic only compatible with cpu | |
im.cpu() if dynamic else im, | |
f, | |
verbose=False, | |
opset_version=opset, | |
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False | |
input_names=['images'], | |
output_names=output_names, | |
dynamic_axes=dynamic or None) | |
# Checks | |
model_onnx = onnx.load(f) # load onnx model | |
onnx.checker.check_model(model_onnx) # check onnx model | |
# Metadata | |
d = {'stride': int(max(model.stride)), 'names': model.names} | |
for k, v in d.items(): | |
meta = model_onnx.metadata_props.add() | |
meta.key, meta.value = k, str(v) | |
onnx.save(model_onnx, f) | |
# Simplify | |
if simplify: | |
try: | |
cuda = torch.cuda.is_available() | |
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1')) | |
import onnxsim | |
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') | |
model_onnx, check = onnxsim.simplify(model_onnx) | |
assert check, 'assert check failed' | |
onnx.save(model_onnx, f) | |
except Exception as e: | |
LOGGER.info(f'{prefix} simplifier failure: {e}') | |
return f, model_onnx | |
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')): | |
# YOLOv5 OpenVINO export | |
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/ | |
import openvino.inference_engine as ie | |
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') | |
f = str(file).replace('.pt', f'_openvino_model{os.sep}') | |
args = [ | |
'mo', | |
'--input_model', | |
str(file.with_suffix('.onnx')), | |
'--output_dir', | |
f, | |
'--data_type', | |
('FP16' if half else 'FP32'),] | |
subprocess.run(args, check=True, env=os.environ) # export | |
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml | |
return f, None | |
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')): | |
# YOLOv5 Paddle export | |
check_requirements(('paddlepaddle', 'x2paddle')) | |
import x2paddle | |
from x2paddle.convert import pytorch2paddle | |
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...') | |
f = str(file).replace('.pt', f'_paddle_model{os.sep}') | |
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export | |
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml | |
return f, None | |
def export_coreml(model, im, file, int8, half, nms, prefix=colorstr('CoreML:')): | |
# YOLOv5 CoreML export | |
check_requirements('coremltools') | |
import coremltools as ct | |
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') | |
f = file.with_suffix('.mlmodel') | |
if nms: | |
model = iOSModel(model, im) | |
ts = torch.jit.trace(model, im, strict=False) # TorchScript model | |
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) | |
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None) | |
if bits < 32: | |
if MACOS: # quantization only supported on macOS | |
with warnings.catch_warnings(): | |
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress numpy==1.20 float warning | |
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) | |
else: | |
print(f'{prefix} quantization only supported on macOS, skipping...') | |
ct_model.save(f) | |
return f, ct_model | |
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): | |
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt | |
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' | |
try: | |
import tensorrt as trt | |
except Exception: | |
if platform.system() == 'Linux': | |
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') | |
import tensorrt as trt | |
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012 | |
grid = model.model[-1].anchor_grid | |
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] | |
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 | |
model.model[-1].anchor_grid = grid | |
else: # TensorRT >= 8 | |
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0 | |
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12 | |
onnx = file.with_suffix('.onnx') | |
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') | |
assert onnx.exists(), f'failed to export ONNX file: {onnx}' | |
f = file.with_suffix('.engine') # TensorRT engine file | |
logger = trt.Logger(trt.Logger.INFO) | |
if verbose: | |
logger.min_severity = trt.Logger.Severity.VERBOSE | |
builder = trt.Builder(logger) | |
config = builder.create_builder_config() | |
config.max_workspace_size = workspace * 1 << 30 | |
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice | |
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | |
network = builder.create_network(flag) | |
parser = trt.OnnxParser(network, logger) | |
if not parser.parse_from_file(str(onnx)): | |
raise RuntimeError(f'failed to load ONNX file: {onnx}') | |
inputs = [network.get_input(i) for i in range(network.num_inputs)] | |
outputs = [network.get_output(i) for i in range(network.num_outputs)] | |
for inp in inputs: | |
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') | |
for out in outputs: | |
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') | |
if dynamic: | |
if im.shape[0] <= 1: | |
LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument') | |
profile = builder.create_optimization_profile() | |
for inp in inputs: | |
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape) | |
config.add_optimization_profile(profile) | |
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}') | |
if builder.platform_has_fast_fp16 and half: | |
config.set_flag(trt.BuilderFlag.FP16) | |
with builder.build_engine(network, config) as engine, open(f, 'wb') as t: | |
t.write(engine.serialize()) | |
return f, None | |
def export_saved_model(model, | |
im, | |
file, | |
dynamic, | |
tf_nms=False, | |
agnostic_nms=False, | |
topk_per_class=100, | |
topk_all=100, | |
iou_thres=0.45, | |
conf_thres=0.25, | |
keras=False, | |
prefix=colorstr('TensorFlow SavedModel:')): | |
# YOLOv5 TensorFlow SavedModel export | |
try: | |
import tensorflow as tf | |
except Exception: | |
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}") | |
import tensorflow as tf | |
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 | |
from models.tf import TFModel | |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
f = str(file).replace('.pt', '_saved_model') | |
batch_size, ch, *imgsz = list(im.shape) # BCHW | |
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) | |
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow | |
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) | |
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size) | |
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) | |
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) | |
keras_model.trainable = False | |
keras_model.summary() | |
if keras: | |
keras_model.save(f, save_format='tf') | |
else: | |
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) | |
m = tf.function(lambda x: keras_model(x)) # full model | |
m = m.get_concrete_function(spec) | |
frozen_func = convert_variables_to_constants_v2(m) | |
tfm = tf.Module() | |
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec]) | |
tfm.__call__(im) | |
tf.saved_model.save(tfm, | |
f, | |
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version( | |
tf.__version__, '2.6') else tf.saved_model.SaveOptions()) | |
return f, keras_model | |
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): | |
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow | |
import tensorflow as tf | |
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 | |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
f = file.with_suffix('.pb') | |
m = tf.function(lambda x: keras_model(x)) # full model | |
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) | |
frozen_func = convert_variables_to_constants_v2(m) | |
frozen_func.graph.as_graph_def() | |
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) | |
return f, None | |
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): | |
# YOLOv5 TensorFlow Lite export | |
import tensorflow as tf | |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
batch_size, ch, *imgsz = list(im.shape) # BCHW | |
f = str(file).replace('.pt', '-fp16.tflite') | |
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) | |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] | |
converter.target_spec.supported_types = [tf.float16] | |
converter.optimizations = [tf.lite.Optimize.DEFAULT] | |
if int8: | |
from models.tf import representative_dataset_gen | |
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False) | |
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100) | |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] | |
converter.target_spec.supported_types = [] | |
converter.inference_input_type = tf.uint8 # or tf.int8 | |
converter.inference_output_type = tf.uint8 # or tf.int8 | |
converter.experimental_new_quantizer = True | |
f = str(file).replace('.pt', '-int8.tflite') | |
if nms or agnostic_nms: | |
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS) | |
tflite_model = converter.convert() | |
open(f, 'wb').write(tflite_model) | |
return f, None | |
def export_edgetpu(file, prefix=colorstr('Edge TPU:')): | |
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ | |
cmd = 'edgetpu_compiler --version' | |
help_url = 'https://coral.ai/docs/edgetpu/compiler/' | |
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' | |
if subprocess.run(f'{cmd} > /dev/null 2>&1', shell=True).returncode != 0: | |
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') | |
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system | |
for c in ( | |
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', | |
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', | |
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'): | |
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) | |
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] | |
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') | |
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model | |
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model | |
subprocess.run([ | |
'edgetpu_compiler', | |
'-s', | |
'-d', | |
'-k', | |
'10', | |
'--out_dir', | |
str(file.parent), | |
f_tfl,], check=True) | |
return f, None | |
def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')): | |
# YOLOv5 TensorFlow.js export | |
check_requirements('tensorflowjs') | |
import tensorflowjs as tfjs | |
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') | |
f = str(file).replace('.pt', '_web_model') # js dir | |
f_pb = file.with_suffix('.pb') # *.pb path | |
f_json = f'{f}/model.json' # *.json path | |
args = [ | |
'tensorflowjs_converter', | |
'--input_format=tf_frozen_model', | |
'--quantize_uint8' if int8 else '', | |
'--output_node_names=Identity,Identity_1,Identity_2,Identity_3', | |
str(f_pb), | |
str(f),] | |
subprocess.run([arg for arg in args if arg], check=True) | |
json = Path(f_json).read_text() | |
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order | |
subst = re.sub( | |
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' | |
r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' | |
r'"Identity_1": {"name": "Identity_1"}, ' | |
r'"Identity_2": {"name": "Identity_2"}, ' | |
r'"Identity_3": {"name": "Identity_3"}}}', json) | |
j.write(subst) | |
return f, None | |
def add_tflite_metadata(file, metadata, num_outputs): | |
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata | |
with contextlib.suppress(ImportError): | |
# check_requirements('tflite_support') | |
from tflite_support import flatbuffers | |
from tflite_support import metadata as _metadata | |
from tflite_support import metadata_schema_py_generated as _metadata_fb | |
tmp_file = Path('/tmp/meta.txt') | |
with open(tmp_file, 'w') as meta_f: | |
meta_f.write(str(metadata)) | |
model_meta = _metadata_fb.ModelMetadataT() | |
label_file = _metadata_fb.AssociatedFileT() | |
label_file.name = tmp_file.name | |
model_meta.associatedFiles = [label_file] | |
subgraph = _metadata_fb.SubGraphMetadataT() | |
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()] | |
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs | |
model_meta.subgraphMetadata = [subgraph] | |
b = flatbuffers.Builder(0) | |
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) | |
metadata_buf = b.Output() | |
populator = _metadata.MetadataPopulator.with_model_file(file) | |
populator.load_metadata_buffer(metadata_buf) | |
populator.load_associated_files([str(tmp_file)]) | |
populator.populate() | |
tmp_file.unlink() | |
def pipeline_coreml(model, im, file, names, y, prefix=colorstr('CoreML Pipeline:')): | |
# YOLOv5 CoreML pipeline | |
import coremltools as ct | |
from PIL import Image | |
print(f'{prefix} starting pipeline with coremltools {ct.__version__}...') | |
batch_size, ch, h, w = list(im.shape) # BCHW | |
t = time.time() | |
# Output shapes | |
spec = model.get_spec() | |
out0, out1 = iter(spec.description.output) | |
if platform.system() == 'Darwin': | |
img = Image.new('RGB', (w, h)) # img(192 width, 320 height) | |
# img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection | |
out = model.predict({'image': img}) | |
out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape | |
else: # linux and windows can not run model.predict(), get sizes from pytorch output y | |
s = tuple(y[0].shape) | |
out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4) # (3780, 80), (3780, 4) | |
# Checks | |
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height | |
na, nc = out0_shape | |
# na, nc = out0.type.multiArrayType.shape # number anchors, classes | |
assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check | |
# Define output shapes (missing) | |
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80) | |
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4) | |
# spec.neuralNetwork.preprocessing[0].featureName = '0' | |
# Flexible input shapes | |
# from coremltools.models.neural_network import flexible_shape_utils | |
# s = [] # shapes | |
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192)) | |
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width) | |
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s) | |
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges | |
# r.add_height_range((192, 640)) | |
# r.add_width_range((192, 640)) | |
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r) | |
print(spec.description) | |
# Model from spec | |
model = ct.models.MLModel(spec) | |
# 3. Create NMS protobuf | |
nms_spec = ct.proto.Model_pb2.Model() | |
nms_spec.specificationVersion = 5 | |
for i in range(2): | |
decoder_output = model._spec.description.output[i].SerializeToString() | |
nms_spec.description.input.add() | |
nms_spec.description.input[i].ParseFromString(decoder_output) | |
nms_spec.description.output.add() | |
nms_spec.description.output[i].ParseFromString(decoder_output) | |
nms_spec.description.output[0].name = 'confidence' | |
nms_spec.description.output[1].name = 'coordinates' | |
output_sizes = [nc, 4] | |
for i in range(2): | |
ma_type = nms_spec.description.output[i].type.multiArrayType | |
ma_type.shapeRange.sizeRanges.add() | |
ma_type.shapeRange.sizeRanges[0].lowerBound = 0 | |
ma_type.shapeRange.sizeRanges[0].upperBound = -1 | |
ma_type.shapeRange.sizeRanges.add() | |
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i] | |
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i] | |
del ma_type.shape[:] | |
nms = nms_spec.nonMaximumSuppression | |
nms.confidenceInputFeatureName = out0.name # 1x507x80 | |
nms.coordinatesInputFeatureName = out1.name # 1x507x4 | |
nms.confidenceOutputFeatureName = 'confidence' | |
nms.coordinatesOutputFeatureName = 'coordinates' | |
nms.iouThresholdInputFeatureName = 'iouThreshold' | |
nms.confidenceThresholdInputFeatureName = 'confidenceThreshold' | |
nms.iouThreshold = 0.45 | |
nms.confidenceThreshold = 0.25 | |
nms.pickTop.perClass = True | |
nms.stringClassLabels.vector.extend(names.values()) | |
nms_model = ct.models.MLModel(nms_spec) | |
# 4. Pipeline models together | |
pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)), | |
('iouThreshold', ct.models.datatypes.Double()), | |
('confidenceThreshold', ct.models.datatypes.Double())], | |
output_features=['confidence', 'coordinates']) | |
pipeline.add_model(model) | |
pipeline.add_model(nms_model) | |
# Correct datatypes | |
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString()) | |
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString()) | |
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString()) | |
# Update metadata | |
pipeline.spec.specificationVersion = 5 | |
pipeline.spec.description.metadata.versionString = 'https://github.com/ultralytics/yolov5' | |
pipeline.spec.description.metadata.shortDescription = 'https://github.com/ultralytics/yolov5' | |
pipeline.spec.description.metadata.author = 'glenn.jocher@ultralytics.com' | |
pipeline.spec.description.metadata.license = 'https://github.com/ultralytics/yolov5/blob/master/LICENSE' | |
pipeline.spec.description.metadata.userDefined.update({ | |
'classes': ','.join(names.values()), | |
'iou_threshold': str(nms.iouThreshold), | |
'confidence_threshold': str(nms.confidenceThreshold)}) | |
# Save the model | |
f = file.with_suffix('.mlmodel') # filename | |
model = ct.models.MLModel(pipeline.spec) | |
model.input_description['image'] = 'Input image' | |
model.input_description['iouThreshold'] = f'(optional) IOU Threshold override (default: {nms.iouThreshold})' | |
model.input_description['confidenceThreshold'] = \ | |
f'(optional) Confidence Threshold override (default: {nms.confidenceThreshold})' | |
model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")' | |
model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)' | |
model.save(f) # pipelined | |
print(f'{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)') | |
def run( | |
data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' | |
weights=ROOT / 'yolov5s.pt', # weights path | |
imgsz=(640, 640), # image (height, width) | |
batch_size=1, # batch size | |
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
include=('torchscript', 'onnx'), # include formats | |
half=False, # FP16 half-precision export | |
inplace=False, # set YOLOv5 Detect() inplace=True | |
keras=False, # use Keras | |
optimize=False, # TorchScript: optimize for mobile | |
int8=False, # CoreML/TF INT8 quantization | |
dynamic=False, # ONNX/TF/TensorRT: dynamic axes | |
simplify=False, # ONNX: simplify model | |
opset=12, # ONNX: opset version | |
verbose=False, # TensorRT: verbose log | |
workspace=4, # TensorRT: workspace size (GB) | |
nms=False, # TF: add NMS to model | |
agnostic_nms=False, # TF: add agnostic NMS to model | |
topk_per_class=100, # TF.js NMS: topk per class to keep | |
topk_all=100, # TF.js NMS: topk for all classes to keep | |
iou_thres=0.45, # TF.js NMS: IoU threshold | |
conf_thres=0.25, # TF.js NMS: confidence threshold | |
): | |
t = time.time() | |
include = [x.lower() for x in include] # to lowercase | |
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments | |
flags = [x in include for x in fmts] | |
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}' | |
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans | |
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights | |
# Load PyTorch model | |
device = select_device(device) | |
if half: | |
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0' | |
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both' | |
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model | |
# Checks | |
imgsz *= 2 if len(imgsz) == 1 else 1 # expand | |
if optimize: | |
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' | |
# Input | |
gs = int(max(model.stride)) # grid size (max stride) | |
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples | |
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection | |
# Update model | |
model.eval() | |
for k, m in model.named_modules(): | |
if isinstance(m, Detect): | |
m.inplace = inplace | |
m.dynamic = dynamic | |
m.export = True | |
for _ in range(2): | |
y = model(im) # dry runs | |
if half and not coreml: | |
im, model = im.half(), model.half() # to FP16 | |
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape | |
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata | |
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") | |
# Exports | |
f = [''] * len(fmts) # exported filenames | |
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning | |
if jit: # TorchScript | |
f[0], _ = export_torchscript(model, im, file, optimize) | |
if engine: # TensorRT required before ONNX | |
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose) | |
if onnx or xml: # OpenVINO requires ONNX | |
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify) | |
if xml: # OpenVINO | |
f[3], _ = export_openvino(file, metadata, half) | |
if coreml: # CoreML | |
f[4], ct_model = export_coreml(model, im, file, int8, half, nms) | |
if nms: | |
pipeline_coreml(ct_model, im, file, model.names, y) | |
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats | |
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.' | |
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.' | |
f[5], s_model = export_saved_model(model.cpu(), | |
im, | |
file, | |
dynamic, | |
tf_nms=nms or agnostic_nms or tfjs, | |
agnostic_nms=agnostic_nms or tfjs, | |
topk_per_class=topk_per_class, | |
topk_all=topk_all, | |
iou_thres=iou_thres, | |
conf_thres=conf_thres, | |
keras=keras) | |
if pb or tfjs: # pb prerequisite to tfjs | |
f[6], _ = export_pb(s_model, file) | |
if tflite or edgetpu: | |
f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms) | |
if edgetpu: | |
f[8], _ = export_edgetpu(file) | |
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs)) | |
if tfjs: | |
f[9], _ = export_tfjs(file, int8) | |
if paddle: # PaddlePaddle | |
f[10], _ = export_paddle(model, im, file, metadata) | |
# Finish | |
f = [str(x) for x in f if x] # filter out '' and None | |
if any(f): | |
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type | |
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel) | |
dir = Path('segment' if seg else 'classify' if cls else '') | |
h = '--half' if half else '' # --half FP16 inference arg | |
s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \ | |
'# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else '' | |
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)' | |
f"\nResults saved to {colorstr('bold', file.parent.resolve())}" | |
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}" | |
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}" | |
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}" | |
f'\nVisualize: https://netron.app') | |
return f # return list of exported files/dirs | |
def parse_opt(known=False): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') | |
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') | |
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') | |
parser.add_argument('--batch-size', type=int, default=1, help='batch size') | |
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--half', action='store_true', help='FP16 half-precision export') | |
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') | |
parser.add_argument('--keras', action='store_true', help='TF: use Keras') | |
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') | |
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization') | |
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes') | |
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') | |
parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version') | |
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') | |
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') | |
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') | |
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') | |
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') | |
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep') | |
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold') | |
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold') | |
parser.add_argument( | |
'--include', | |
nargs='+', | |
default=['torchscript'], | |
help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle') | |
opt = parser.parse_known_args()[0] if known else parser.parse_args() | |
print_args(vars(opt)) | |
return opt | |
def main(opt): | |
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): | |
run(**vars(opt)) | |
if __name__ == '__main__': | |
opt = parse_opt() | |
main(opt) | |