import os import csv import numpy as np from scipy.optimize import linear_sum_assignment from ._base_dataset import _BaseDataset from .. import utils from ..utils import TrackEvalException from .. import _timing class Kitti2DBox(_BaseDataset): """Dataset class for KITTI 2D bounding box tracking""" @staticmethod def get_default_dataset_config(): """Default class config values""" code_path = utils.get_code_path() default_config = { 'GT_FOLDER': os.path.join(code_path, 'data/gt/kitti/kitti_2d_box_train'), # Location of GT data 'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/kitti/kitti_2d_box_train/'), # Trackers location 'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER) 'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder) 'CLASSES_TO_EVAL': ['car', 'pedestrian'], # Valid: ['car', 'pedestrian'] 'SPLIT_TO_EVAL': 'training', # Valid: 'training', 'val', 'training_minus_val', 'test' 'INPUT_AS_ZIP': False, # Whether tracker input files are zipped 'PRINT_CONFIG': True, # Whether to print current config 'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER 'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER 'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL } return default_config def __init__(self, config=None): """Initialise dataset, checking that all required files are present""" super().__init__() # Fill non-given config values with defaults self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name()) self.gt_fol = self.config['GT_FOLDER'] self.tracker_fol = self.config['TRACKERS_FOLDER'] self.should_classes_combine = False self.use_super_categories = False self.data_is_zipped = self.config['INPUT_AS_ZIP'] self.output_fol = self.config['OUTPUT_FOLDER'] if self.output_fol is None: self.output_fol = self.tracker_fol self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER'] self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER'] self.max_occlusion = 2 self.max_truncation = 0 self.min_height = 25 # Get classes to eval self.valid_classes = ['car', 'pedestrian'] self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None for cls in self.config['CLASSES_TO_EVAL']] if not all(self.class_list): raise TrackEvalException('Attempted to evaluate an invalid class. Only classes [car, pedestrian] are valid.') self.class_name_to_class_id = {'car': 1, 'van': 2, 'truck': 3, 'pedestrian': 4, 'person': 5, # person sitting 'cyclist': 6, 'tram': 7, 'misc': 8, 'dontcare': 9, 'car_2': 1} # Get sequences to eval and check gt files exist self.seq_list = [] self.seq_lengths = {} seqmap_name = 'evaluate_tracking.seqmap.' + self.config['SPLIT_TO_EVAL'] seqmap_file = os.path.join(self.gt_fol, seqmap_name) if not os.path.isfile(seqmap_file): raise TrackEvalException('no seqmap found: ' + os.path.basename(seqmap_file)) with open(seqmap_file) as fp: dialect = csv.Sniffer().sniff(fp.read(1024)) fp.seek(0) reader = csv.reader(fp, dialect) for row in reader: if len(row) >= 4: seq = row[0] self.seq_list.append(seq) self.seq_lengths[seq] = int(row[3]) if not self.data_is_zipped: curr_file = os.path.join(self.gt_fol, 'label_02', seq + '.txt') if not os.path.isfile(curr_file): raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file)) if self.data_is_zipped: curr_file = os.path.join(self.gt_fol, 'data.zip') if not os.path.isfile(curr_file): raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file)) # Get trackers to eval if self.config['TRACKERS_TO_EVAL'] is None: self.tracker_list = os.listdir(self.tracker_fol) else: self.tracker_list = self.config['TRACKERS_TO_EVAL'] if self.config['TRACKER_DISPLAY_NAMES'] is None: self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list)) elif (self.config['TRACKERS_TO_EVAL'] is not None) and ( len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)): self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES'])) else: raise TrackEvalException('List of tracker files and tracker display names do not match.') for tracker in self.tracker_list: if self.data_is_zipped: curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip') if not os.path.isfile(curr_file): raise TrackEvalException('Tracker file not found: ' + tracker + '/' + os.path.basename(curr_file)) else: for seq in self.seq_list: curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt') if not os.path.isfile(curr_file): raise TrackEvalException( 'Tracker file not found: ' + tracker + '/' + self.tracker_sub_fol + '/' + os.path.basename( curr_file)) def get_display_name(self, tracker): return self.tracker_to_disp[tracker] def _load_raw_file(self, tracker, seq, is_gt): """Load a file (gt or tracker) in the kitti 2D box format If is_gt, this returns a dict which contains the fields: [gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det). [gt_dets, gt_crowd_ignore_regions]: list (for each timestep) of lists of detections. [gt_extras] : list (for each timestep) of dicts (for each extra) of 1D NDArrays (for each det). if not is_gt, this returns a dict which contains the fields: [tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det). [tracker_dets]: list (for each timestep) of lists of detections. """ # File location if self.data_is_zipped: if is_gt: zip_file = os.path.join(self.gt_fol, 'data.zip') else: zip_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip') file = seq + '.txt' else: zip_file = None if is_gt: file = os.path.join(self.gt_fol, 'label_02', seq + '.txt') else: file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt') # Ignore regions if is_gt: crowd_ignore_filter = {2: ['dontcare']} else: crowd_ignore_filter = None # Valid classes valid_filter = {2: [x for x in self.class_list]} if is_gt: if 'car' in self.class_list: valid_filter[2].append('van') if 'pedestrian' in self.class_list: valid_filter[2] += ['person'] # Convert kitti class strings to class ids convert_filter = {2: self.class_name_to_class_id} # Load raw data from text file read_data, ignore_data = self._load_simple_text_file(file, time_col=0, id_col=1, remove_negative_ids=True, valid_filter=valid_filter, crowd_ignore_filter=crowd_ignore_filter, convert_filter=convert_filter, is_zipped=self.data_is_zipped, zip_file=zip_file) # Convert data to required format num_timesteps = self.seq_lengths[seq] data_keys = ['ids', 'classes', 'dets'] if is_gt: data_keys += ['gt_crowd_ignore_regions', 'gt_extras'] else: data_keys += ['tracker_confidences'] raw_data = {key: [None] * num_timesteps for key in data_keys} # Check for any extra time keys current_time_keys = [str(t) for t in range(num_timesteps)] extra_time_keys = [x for x in read_data.keys() if x not in current_time_keys] if len(extra_time_keys) > 0: if is_gt: text = 'Ground-truth' else: text = 'Tracking' raise TrackEvalException( text + ' data contains the following invalid timesteps in seq %s: ' % seq + ', '.join( [str(x) + ', ' for x in extra_time_keys])) for t in range(num_timesteps): time_key = str(t) if time_key in read_data.keys(): time_data = np.asarray(read_data[time_key], dtype=np.float) raw_data['dets'][t] = np.atleast_2d(time_data[:, 6:10]) raw_data['ids'][t] = np.atleast_1d(time_data[:, 1]).astype(int) raw_data['classes'][t] = np.atleast_1d(time_data[:, 2]).astype(int) if is_gt: gt_extras_dict = {'truncation': np.atleast_1d(time_data[:, 3].astype(int)), 'occlusion': np.atleast_1d(time_data[:, 4].astype(int))} raw_data['gt_extras'][t] = gt_extras_dict else: if time_data.shape[1] > 17: raw_data['tracker_confidences'][t] = np.atleast_1d(time_data[:, 17]) else: raw_data['tracker_confidences'][t] = np.ones(time_data.shape[0]) else: raw_data['dets'][t] = np.empty((0, 4)) raw_data['ids'][t] = np.empty(0).astype(int) raw_data['classes'][t] = np.empty(0).astype(int) if is_gt: gt_extras_dict = {'truncation': np.empty(0), 'occlusion': np.empty(0)} raw_data['gt_extras'][t] = gt_extras_dict else: raw_data['tracker_confidences'][t] = np.empty(0) if is_gt: if time_key in ignore_data.keys(): time_ignore = np.asarray(ignore_data[time_key], dtype=np.float) raw_data['gt_crowd_ignore_regions'][t] = np.atleast_2d(time_ignore[:, 6:10]) else: raw_data['gt_crowd_ignore_regions'][t] = np.empty((0, 4)) if is_gt: key_map = {'ids': 'gt_ids', 'classes': 'gt_classes', 'dets': 'gt_dets'} else: key_map = {'ids': 'tracker_ids', 'classes': 'tracker_classes', 'dets': 'tracker_dets'} for k, v in key_map.items(): raw_data[v] = raw_data.pop(k) raw_data['num_timesteps'] = num_timesteps raw_data['seq'] = seq return raw_data @_timing.time def get_preprocessed_seq_data(self, raw_data, cls): """ Preprocess data for a single sequence for a single class ready for evaluation. Inputs: - raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data(). - cls is the class to be evaluated. Outputs: - data is a dict containing all of the information that metrics need to perform evaluation. It contains the following fields: [num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers. [gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det). [gt_dets, tracker_dets]: list (for each timestep) of lists of detections. [similarity_scores]: list (for each timestep) of 2D NDArrays. Notes: General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps. 1) Extract only detections relevant for the class to be evaluated (including distractor detections). 2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a distractor class, or otherwise marked as to be removed. 3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain other criteria (e.g. are too small). 4) Remove gt dets that were only useful for preprocessing and not for actual evaluation. After the above preprocessing steps, this function also calculates the number of gt and tracker detections and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are unique within each timestep. KITTI: In KITTI, the 4 preproc steps are as follow: 1) There are two classes (pedestrian and car) which are evaluated separately. 2) For the pedestrian class, the 'person' class is distractor objects (people sitting). For the car class, the 'van' class are distractor objects. GT boxes marked as having occlusion level > 2 or truncation level > 0 are also treated as distractors. 3) Crowd ignore regions are used to remove unmatched detections. Also unmatched detections with height <= 25 pixels are removed. 4) Distractor gt dets (including truncated and occluded) are removed. """ if cls == 'pedestrian': distractor_classes = [self.class_name_to_class_id['person']] elif cls == 'car': distractor_classes = [self.class_name_to_class_id['van']] else: raise (TrackEvalException('Class %s is not evaluatable' % cls)) cls_id = self.class_name_to_class_id[cls] data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'tracker_confidences', 'similarity_scores'] data = {key: [None] * raw_data['num_timesteps'] for key in data_keys} unique_gt_ids = [] unique_tracker_ids = [] num_gt_dets = 0 num_tracker_dets = 0 for t in range(raw_data['num_timesteps']): # Only extract relevant dets for this class for preproc and eval (cls + distractor classes) gt_class_mask = np.sum([raw_data['gt_classes'][t] == c for c in [cls_id] + distractor_classes], axis=0) gt_class_mask = gt_class_mask.astype(np.bool) gt_ids = raw_data['gt_ids'][t][gt_class_mask] gt_dets = raw_data['gt_dets'][t][gt_class_mask] gt_classes = raw_data['gt_classes'][t][gt_class_mask] gt_occlusion = raw_data['gt_extras'][t]['occlusion'][gt_class_mask] gt_truncation = raw_data['gt_extras'][t]['truncation'][gt_class_mask] tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id) tracker_class_mask = tracker_class_mask.astype(np.bool) tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask] tracker_dets = raw_data['tracker_dets'][t][tracker_class_mask] tracker_confidences = raw_data['tracker_confidences'][t][tracker_class_mask] similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask] # Match tracker and gt dets (with hungarian algorithm) and remove tracker dets which match with gt dets # which are labeled as truncated, occluded, or belonging to a distractor class. to_remove_matched = np.array([], np.int) unmatched_indices = np.arange(tracker_ids.shape[0]) if gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0: matching_scores = similarity_scores.copy() matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = 0 match_rows, match_cols = linear_sum_assignment(-matching_scores) actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps match_rows = match_rows[actually_matched_mask] match_cols = match_cols[actually_matched_mask] is_distractor_class = np.isin(gt_classes[match_rows], distractor_classes) is_occluded_or_truncated = np.logical_or( gt_occlusion[match_rows] > self.max_occlusion + np.finfo('float').eps, gt_truncation[match_rows] > self.max_truncation + np.finfo('float').eps) to_remove_matched = np.logical_or(is_distractor_class, is_occluded_or_truncated) to_remove_matched = match_cols[to_remove_matched] unmatched_indices = np.delete(unmatched_indices, match_cols, axis=0) # For unmatched tracker dets, also remove those smaller than a minimum height. unmatched_tracker_dets = tracker_dets[unmatched_indices, :] unmatched_heights = unmatched_tracker_dets[:, 3] - unmatched_tracker_dets[:, 1] is_too_small = unmatched_heights <= self.min_height + np.finfo('float').eps # For unmatched tracker dets, also remove those that are greater than 50% within a crowd ignore region. crowd_ignore_regions = raw_data['gt_crowd_ignore_regions'][t] intersection_with_ignore_region = self._calculate_box_ious(unmatched_tracker_dets, crowd_ignore_regions, box_format='x0y0x1y1', do_ioa=True) is_within_crowd_ignore_region = np.any(intersection_with_ignore_region > 0.5 + np.finfo('float').eps, axis=1) # Apply preprocessing to remove all unwanted tracker dets. to_remove_unmatched = unmatched_indices[np.logical_or(is_too_small, is_within_crowd_ignore_region)] to_remove_tracker = np.concatenate((to_remove_matched, to_remove_unmatched), axis=0) data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0) data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0) data['tracker_confidences'][t] = np.delete(tracker_confidences, to_remove_tracker, axis=0) similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1) # Also remove gt dets that were only useful for preprocessing and are not needed for evaluation. # These are those that are occluded, truncated and from distractor objects. gt_to_keep_mask = (np.less_equal(gt_occlusion, self.max_occlusion)) & \ (np.less_equal(gt_truncation, self.max_truncation)) & \ (np.equal(gt_classes, cls_id)) data['gt_ids'][t] = gt_ids[gt_to_keep_mask] data['gt_dets'][t] = gt_dets[gt_to_keep_mask, :] data['similarity_scores'][t] = similarity_scores[gt_to_keep_mask] unique_gt_ids += list(np.unique(data['gt_ids'][t])) unique_tracker_ids += list(np.unique(data['tracker_ids'][t])) num_tracker_dets += len(data['tracker_ids'][t]) num_gt_dets += len(data['gt_ids'][t]) # Re-label IDs such that there are no empty IDs if len(unique_gt_ids) > 0: unique_gt_ids = np.unique(unique_gt_ids) gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1)) gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids)) for t in range(raw_data['num_timesteps']): if len(data['gt_ids'][t]) > 0: data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int) if len(unique_tracker_ids) > 0: unique_tracker_ids = np.unique(unique_tracker_ids) tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1)) tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids)) for t in range(raw_data['num_timesteps']): if len(data['tracker_ids'][t]) > 0: data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int) # Record overview statistics. data['num_tracker_dets'] = num_tracker_dets data['num_gt_dets'] = num_gt_dets data['num_tracker_ids'] = len(unique_tracker_ids) data['num_gt_ids'] = len(unique_gt_ids) data['num_timesteps'] = raw_data['num_timesteps'] data['seq'] = raw_data['seq'] # Ensure that ids are unique per timestep. self._check_unique_ids(data) return data def _calculate_similarities(self, gt_dets_t, tracker_dets_t): similarity_scores = self._calculate_box_ious(gt_dets_t, tracker_dets_t, box_format='x0y0x1y1') return similarity_scores