import os import csv import configparser import numpy as np from scipy.optimize import linear_sum_assignment from ._base_dataset import _BaseDataset from .. import utils from .. import _timing from ..utils import TrackEvalException class PersonPath22(_BaseDataset): """Dataset class for MOT Challenge 2D bounding box tracking""" @staticmethod def get_default_dataset_config(): """Default class config values""" code_path = utils.get_code_path() default_config = { 'GT_FOLDER': os.path.join(code_path, 'data/gt/person_path_22/'), # Location of GT data 'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/person_path_22/'), # Trackers location 'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER) 'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder) 'CLASSES_TO_EVAL': ['pedestrian'], # Valid: ['pedestrian'] 'BENCHMARK': 'person_path_22', # Valid: 'person_path_22' 'SPLIT_TO_EVAL': 'test', # Valid: 'train', 'test', 'all' 'INPUT_AS_ZIP': False, # Whether tracker input files are zipped 'PRINT_CONFIG': True, # Whether to print current config 'DO_PREPROC': True, # Whether to perform preprocessing 'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER 'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER 'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL 'SEQMAP_FOLDER': None, # Where seqmaps are found (if None, GT_FOLDER/seqmaps) 'SEQMAP_FILE': None, # Directly specify seqmap file (if none use seqmap_folder/benchmark-split_to_eval) 'SEQ_INFO': None, # If not None, directly specify sequences to eval and their number of timesteps 'GT_LOC_FORMAT': '{gt_folder}/{seq}/gt/gt.txt', # '{gt_folder}/{seq}/gt/gt.txt' 'SKIP_SPLIT_FOL': False, # If False, data is in GT_FOLDER/BENCHMARK-SPLIT_TO_EVAL/ and in # TRACKERS_FOLDER/BENCHMARK-SPLIT_TO_EVAL/tracker/ # If True, then the middle 'benchmark-split' folder is skipped for both. } return default_config def __init__(self, config=None): """Initialise dataset, checking that all required files are present""" super().__init__() # Fill non-given config values with defaults self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name()) self.benchmark = self.config['BENCHMARK'] gt_set = self.config['BENCHMARK'] + '-' + self.config['SPLIT_TO_EVAL'] self.gt_set = gt_set if not self.config['SKIP_SPLIT_FOL']: split_fol = gt_set else: split_fol = '' self.gt_fol = os.path.join(self.config['GT_FOLDER'], split_fol) self.tracker_fol = os.path.join(self.config['TRACKERS_FOLDER'], split_fol) self.should_classes_combine = False self.use_super_categories = False self.data_is_zipped = self.config['INPUT_AS_ZIP'] self.do_preproc = self.config['DO_PREPROC'] self.output_fol = self.config['OUTPUT_FOLDER'] if self.output_fol is None: self.output_fol = self.tracker_fol self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER'] self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER'] # Get classes to eval self.valid_classes = ['pedestrian'] self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None for cls in self.config['CLASSES_TO_EVAL']] if not all(self.class_list): raise TrackEvalException('Attempted to evaluate an invalid class. Only pedestrian class is valid.') self.class_name_to_class_id = {'pedestrian': 1, 'person_on_vehicle': 2, 'car': 3, 'bicycle': 4, 'motorbike': 5, 'non_mot_vehicle': 6, 'static_person': 7, 'distractor': 8, 'occluder': 9, 'occluder_on_ground': 10, 'occluder_full': 11, 'reflection': 12, 'crowd': 13} self.valid_class_numbers = list(self.class_name_to_class_id.values()) # Get sequences to eval and check gt files exist self.seq_list, self.seq_lengths = self._get_seq_info() if len(self.seq_list) < 1: raise TrackEvalException('No sequences are selected to be evaluated.') # Check gt files exist for seq in self.seq_list: if not self.data_is_zipped: curr_file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq) if not os.path.isfile(curr_file): print('GT file not found ' + curr_file) raise TrackEvalException('GT file not found for sequence: ' + seq) if self.data_is_zipped: curr_file = os.path.join(self.gt_fol, 'data.zip') if not os.path.isfile(curr_file): print('GT file not found ' + curr_file) raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file)) # Get trackers to eval if self.config['TRACKERS_TO_EVAL'] is None: self.tracker_list = os.listdir(self.tracker_fol) else: self.tracker_list = self.config['TRACKERS_TO_EVAL'] if self.config['TRACKER_DISPLAY_NAMES'] is None: self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list)) elif (self.config['TRACKERS_TO_EVAL'] is not None) and ( len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)): self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES'])) else: raise TrackEvalException('List of tracker files and tracker display names do not match.') for tracker in self.tracker_list: if self.data_is_zipped: curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip') if not os.path.isfile(curr_file): print('Tracker file not found: ' + curr_file) raise TrackEvalException('Tracker file not found: ' + tracker + '/' + os.path.basename(curr_file)) else: for seq in self.seq_list: curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt') if not os.path.isfile(curr_file): print('Tracker file not found: ' + curr_file) raise TrackEvalException( 'Tracker file not found: ' + tracker + '/' + self.tracker_sub_fol + '/' + os.path.basename( curr_file)) def get_display_name(self, tracker): return self.tracker_to_disp[tracker] def _get_seq_info(self): seq_list = [] seq_lengths = {} if self.config["SEQ_INFO"]: seq_list = list(self.config["SEQ_INFO"].keys()) seq_lengths = self.config["SEQ_INFO"] # If sequence length is 'None' tries to read sequence length from .ini files. for seq, seq_length in seq_lengths.items(): if seq_length is None: ini_file = os.path.join(self.gt_fol, seq, 'seqinfo.ini') if not os.path.isfile(ini_file): raise TrackEvalException('ini file does not exist: ' + seq + '/' + os.path.basename(ini_file)) ini_data = configparser.ConfigParser() ini_data.read(ini_file) seq_lengths[seq] = int(ini_data['Sequence']['seqLength']) else: if self.config["SEQMAP_FILE"]: seqmap_file = self.config["SEQMAP_FILE"] else: if self.config["SEQMAP_FOLDER"] is None: seqmap_file = os.path.join(self.config['GT_FOLDER'], 'seqmaps', self.gt_set + '.txt') else: seqmap_file = os.path.join(self.config["SEQMAP_FOLDER"], self.gt_set + '.txt') if not os.path.isfile(seqmap_file): print('no seqmap found: ' + seqmap_file) raise TrackEvalException('no seqmap found: ' + os.path.basename(seqmap_file)) with open(seqmap_file) as fp: reader = csv.reader(fp) for i, row in enumerate(reader): if i == 0 or row[0] == '': continue seq = row[0] seq_list.append(seq) ini_file = os.path.join(self.gt_fol, seq, 'seqinfo.ini') if not os.path.isfile(ini_file): raise TrackEvalException('ini file does not exist: ' + seq + '/' + os.path.basename(ini_file)) ini_data = configparser.ConfigParser() ini_data.read(ini_file) seq_lengths[seq] = int(ini_data['Sequence']['seqLength']) return seq_list, seq_lengths def _load_raw_file(self, tracker, seq, is_gt): """Load a file (gt or tracker) in the MOT Challenge 2D box format If is_gt, this returns a dict which contains the fields: [gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det). [gt_dets, gt_crowd_ignore_regions]: list (for each timestep) of lists of detections. [gt_extras] : list (for each timestep) of dicts (for each extra) of 1D NDArrays (for each det). if not is_gt, this returns a dict which contains the fields: [tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det). [tracker_dets]: list (for each timestep) of lists of detections. """ # File location if self.data_is_zipped: if is_gt: zip_file = os.path.join(self.gt_fol, 'data.zip') else: zip_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip') file = seq + '.txt' else: zip_file = None if is_gt: file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq) else: file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt') # Ignore regions if is_gt: crowd_ignore_filter = {7: ['13']} else: crowd_ignore_filter = None # Load raw data from text file read_data, ignore_data = self._load_simple_text_file(file, is_zipped=self.data_is_zipped, zip_file=zip_file, crowd_ignore_filter=crowd_ignore_filter) # Convert data to required format num_timesteps = self.seq_lengths[seq] data_keys = ['ids', 'classes', 'dets'] if is_gt: data_keys += ['gt_crowd_ignore_regions', 'gt_extras'] else: data_keys += ['tracker_confidences'] raw_data = {key: [None] * num_timesteps for key in data_keys} # Check for any extra time keys current_time_keys = [str( t+ 1) for t in range(num_timesteps)] extra_time_keys = [x for x in read_data.keys() if x not in current_time_keys] if len(extra_time_keys) > 0: if is_gt: text = 'Ground-truth' else: text = 'Tracking' raise TrackEvalException( text + ' data contains the following invalid timesteps in seq %s: ' % seq + ', '.join( [str(x) + ', ' for x in extra_time_keys])) for t in range(num_timesteps): time_key = str(t+1) if time_key in read_data.keys(): try: time_data = np.asarray(read_data[time_key], dtype=np.float) except ValueError: if is_gt: raise TrackEvalException( 'Cannot convert gt data for sequence %s to float. Is data corrupted?' % seq) else: raise TrackEvalException( 'Cannot convert tracking data from tracker %s, sequence %s to float. Is data corrupted?' % ( tracker, seq)) try: raw_data['dets'][t] = np.atleast_2d(time_data[:, 2:6]) raw_data['ids'][t] = np.atleast_1d(time_data[:, 1]).astype(int) except IndexError: if is_gt: err = 'Cannot load gt data from sequence %s, because there is not enough ' \ 'columns in the data.' % seq raise TrackEvalException(err) else: err = 'Cannot load tracker data from tracker %s, sequence %s, because there is not enough ' \ 'columns in the data.' % (tracker, seq) raise TrackEvalException(err) if time_data.shape[1] >= 8: raw_data['classes'][t] = np.atleast_1d(time_data[:, 7]).astype(int) else: if not is_gt: raw_data['classes'][t] = np.ones_like(raw_data['ids'][t]) else: raise TrackEvalException( 'GT data is not in a valid format, there is not enough rows in seq %s, timestep %i.' % ( seq, t)) if is_gt: gt_extras_dict = {'zero_marked': np.atleast_1d(time_data[:, 6].astype(int))} raw_data['gt_extras'][t] = gt_extras_dict else: raw_data['tracker_confidences'][t] = np.atleast_1d(time_data[:, 6]) else: raw_data['dets'][t] = np.empty((0, 4)) raw_data['ids'][t] = np.empty(0).astype(int) raw_data['classes'][t] = np.empty(0).astype(int) if is_gt: gt_extras_dict = {'zero_marked': np.empty(0)} raw_data['gt_extras'][t] = gt_extras_dict else: raw_data['tracker_confidences'][t] = np.empty(0) if is_gt: if time_key in ignore_data.keys(): time_ignore = np.asarray(ignore_data[time_key], dtype=np.float) raw_data['gt_crowd_ignore_regions'][t] = np.atleast_2d(time_ignore[:, 2:6]) else: raw_data['gt_crowd_ignore_regions'][t] = np.empty((0, 4)) if is_gt: key_map = {'ids': 'gt_ids', 'classes': 'gt_classes', 'dets': 'gt_dets'} else: key_map = {'ids': 'tracker_ids', 'classes': 'tracker_classes', 'dets': 'tracker_dets'} for k, v in key_map.items(): raw_data[v] = raw_data.pop(k) raw_data['num_timesteps'] = num_timesteps raw_data['seq'] = seq return raw_data @_timing.time def get_preprocessed_seq_data(self, raw_data, cls): """ Preprocess data for a single sequence for a single class ready for evaluation. Inputs: - raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data(). - cls is the class to be evaluated. Outputs: - data is a dict containing all of the information that metrics need to perform evaluation. It contains the following fields: [num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers. [gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det). [gt_dets, tracker_dets]: list (for each timestep) of lists of detections. [similarity_scores]: list (for each timestep) of 2D NDArrays. Notes: General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps. 1) Extract only detections relevant for the class to be evaluated (including distractor detections). 2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a distractor class, or otherwise marked as to be removed. 3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain other criteria (e.g. are too small). 4) Remove gt dets that were only useful for preprocessing and not for actual evaluation. After the above preprocessing steps, this function also calculates the number of gt and tracker detections and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are unique within each timestep. MOT Challenge: In MOT Challenge, the 4 preproc steps are as follow: 1) There is only one class (pedestrian) to be evaluated, but all other classes are used for preproc. 2) Predictions are matched against all gt boxes (regardless of class), those matching with distractor objects are removed. 3) There is no crowd ignore regions. 4) All gt dets except pedestrian are removed, also removes pedestrian gt dets marked with zero_marked. """ # Check that input data has unique ids self._check_unique_ids(raw_data) distractor_class_names = ['person_on_vehicle', 'static_person', 'distractor', 'reflection'] if self.benchmark == 'MOT20': distractor_class_names.append('non_mot_vehicle') distractor_classes = [self.class_name_to_class_id[x] for x in distractor_class_names] cls_id = self.class_name_to_class_id[cls] data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'tracker_confidences', 'similarity_scores'] data = {key: [None] * raw_data['num_timesteps'] for key in data_keys} unique_gt_ids = [] unique_tracker_ids = [] num_gt_dets = 0 num_tracker_dets = 0 for t in range(raw_data['num_timesteps']): # Get all data gt_ids = raw_data['gt_ids'][t] gt_dets = raw_data['gt_dets'][t] gt_classes = raw_data['gt_classes'][t] gt_zero_marked = raw_data['gt_extras'][t]['zero_marked'] tracker_ids = raw_data['tracker_ids'][t] tracker_dets = raw_data['tracker_dets'][t] tracker_classes = raw_data['tracker_classes'][t] tracker_confidences = raw_data['tracker_confidences'][t] similarity_scores = raw_data['similarity_scores'][t] crowd_ignore_regions = raw_data['gt_crowd_ignore_regions'][t] # Evaluation is ONLY valid for pedestrian class if len(tracker_classes) > 0 and np.max(tracker_classes) > 1: raise TrackEvalException( 'Evaluation is only valid for pedestrian class. Non pedestrian class (%i) found in sequence %s at ' 'timestep %i.' % (np.max(tracker_classes), raw_data['seq'], t)) # Match tracker and gt dets (with hungarian algorithm) and remove tracker dets which match with gt dets # which are labeled as belonging to a distractor class. to_remove_tracker = np.array([], np.int) if self.do_preproc and self.benchmark != 'MOT15' and (gt_ids.shape[0] > 0 or len(crowd_ignore_regions) > 0) and tracker_ids.shape[0] > 0: # Check all classes are valid: invalid_classes = np.setdiff1d(np.unique(gt_classes), self.valid_class_numbers) if len(invalid_classes) > 0: print(' '.join([str(x) for x in invalid_classes])) raise(TrackEvalException('Attempting to evaluate using invalid gt classes. ' 'This warning only triggers if preprocessing is performed, ' 'e.g. not for MOT15 or where prepropressing is explicitly disabled. ' 'Please either check your gt data, or disable preprocessing. ' 'The following invalid classes were found in timestep ' + str(t) + ': ' + ' '.join([str(x) for x in invalid_classes]))) matching_scores = similarity_scores.copy() matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = 0 match_rows, match_cols = linear_sum_assignment(-matching_scores) actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps match_rows = match_rows[actually_matched_mask] match_cols = match_cols[actually_matched_mask] is_distractor_class = np.isin(gt_classes[match_rows], distractor_classes) to_remove_tracker = match_cols[is_distractor_class] # remove bounding boxes that overlap with crowd ignore region. intersection_with_ignore_region = self._calculate_box_ious(tracker_dets, crowd_ignore_regions, box_format='xywh', do_ioa=True) is_within_crowd_ignore_region = np.any(intersection_with_ignore_region > 0.95 + np.finfo('float').eps, axis=1) to_remove_tracker = np.unique(np.concatenate([to_remove_tracker, np.where(is_within_crowd_ignore_region)[0]])) # Apply preprocessing to remove all unwanted tracker dets. data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0) data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0) data['tracker_confidences'][t] = np.delete(tracker_confidences, to_remove_tracker, axis=0) similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1) # Remove gt detections marked as to remove (zero marked), and also remove gt detections not in pedestrian # class (not applicable for MOT15) if self.do_preproc and self.benchmark != 'MOT15': gt_to_keep_mask = (np.not_equal(gt_zero_marked, 0)) & \ (np.equal(gt_classes, cls_id)) else: # There are no classes for MOT15 gt_to_keep_mask = np.not_equal(gt_zero_marked, 0) data['gt_ids'][t] = gt_ids[gt_to_keep_mask] data['gt_dets'][t] = gt_dets[gt_to_keep_mask, :] data['similarity_scores'][t] = similarity_scores[gt_to_keep_mask] unique_gt_ids += list(np.unique(data['gt_ids'][t])) unique_tracker_ids += list(np.unique(data['tracker_ids'][t])) num_tracker_dets += len(data['tracker_ids'][t]) num_gt_dets += len(data['gt_ids'][t]) # Re-label IDs such that there are no empty IDs if len(unique_gt_ids) > 0: unique_gt_ids = np.unique(unique_gt_ids) gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1)) gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids)) for t in range(raw_data['num_timesteps']): if len(data['gt_ids'][t]) > 0: data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int) if len(unique_tracker_ids) > 0: unique_tracker_ids = np.unique(unique_tracker_ids) tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1)) tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids)) for t in range(raw_data['num_timesteps']): if len(data['tracker_ids'][t]) > 0: data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int) # Record overview statistics. data['num_tracker_dets'] = num_tracker_dets data['num_gt_dets'] = num_gt_dets data['num_tracker_ids'] = len(unique_tracker_ids) data['num_gt_ids'] = len(unique_gt_ids) data['num_timesteps'] = raw_data['num_timesteps'] data['seq'] = raw_data['seq'] # Ensure again that ids are unique per timestep after preproc. self._check_unique_ids(data, after_preproc=True) return data def _calculate_similarities(self, gt_dets_t, tracker_dets_t): similarity_scores = self._calculate_box_ious(gt_dets_t, tracker_dets_t, box_format='xywh') return similarity_scores