import torch.nn as nn import torch from pathlib import Path import numpy as np from itertools import islice import torchvision.transforms as transforms import cv2 import sys import torchvision.transforms as T from collections import OrderedDict, namedtuple import gdown from os.path import exists as file_exists from yolov5.utils.general import LOGGER, check_version, check_requirements from trackers.strong_sort.deep.reid_model_factory import (show_downloadeable_models, get_model_url, get_model_name, download_url, load_pretrained_weights) from trackers.strong_sort.deep.models import build_model def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''): # Check file(s) for acceptable suffix if file and suffix: if isinstance(suffix, str): suffix = [suffix] for f in file if isinstance(file, (list, tuple)) else [file]: s = Path(f).suffix.lower() # file suffix if len(s): assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}" class ReIDDetectMultiBackend(nn.Module): # ReID models MultiBackend class for python inference on various backends def __init__(self, weights='osnet_x0_25_msmt17.pt', device=torch.device('cpu'), fp16=False): super().__init__() w = weights[0] if isinstance(weights, list) else weights self.pt, self.jit, self.onnx, self.xml, self.engine, self.coreml, self.saved_model, \ self.pb, self.tflite, self.edgetpu, self.tfjs, self.paddle = self.model_type(w) # get backend self.fp16 = fp16 self.fp16 &= self.pt or self.jit or self.engine # FP16 # Build transform functions self.device = device self.image_size=(256, 128) self.pixel_mean=[0.485, 0.456, 0.406] self.pixel_std=[0.229, 0.224, 0.225] self.transforms = [] self.transforms += [T.Resize(self.image_size)] self.transforms += [T.ToTensor()] self.transforms += [T.Normalize(mean=self.pixel_mean, std=self.pixel_std)] self.preprocess = T.Compose(self.transforms) self.to_pil = T.ToPILImage() model_name = get_model_name(w) if w.suffix == '.pt': model_url = get_model_url(w) if not file_exists(w) and model_url is not None: gdown.download(model_url, str(w), quiet=False) elif file_exists(w): pass else: print(f'No URL associated to the chosen StrongSORT weights ({w}). Choose between:') show_downloadeable_models() exit() # Build model self.model = build_model( model_name, num_classes=1, pretrained=not (w and w.is_file()), use_gpu=device ) if self.pt: # PyTorch # populate model arch with weights if w and w.is_file() and w.suffix == '.pt': load_pretrained_weights(self.model, w) self.model.to(device).eval() self.model.half() if self.fp16 else self.model.float() elif self.jit: LOGGER.info(f'Loading {w} for TorchScript inference...') self.model = torch.jit.load(w) self.model.half() if self.fp16 else self.model.float() elif self.onnx: # ONNX Runtime LOGGER.info(f'Loading {w} for ONNX Runtime inference...') cuda = torch.cuda.is_available() and device.type != 'cpu' #check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime')) import onnxruntime providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider'] self.session = onnxruntime.InferenceSession(str(w), providers=providers) elif self.engine: # TensorRT LOGGER.info(f'Loading {w} for TensorRT inference...') import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0 if device.type == 'cpu': device = torch.device('cuda:0') Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) logger = trt.Logger(trt.Logger.INFO) with open(w, 'rb') as f, trt.Runtime(logger) as runtime: self.model_ = runtime.deserialize_cuda_engine(f.read()) self.context = self.model_.create_execution_context() self.bindings = OrderedDict() self.fp16 = False # default updated below dynamic = False for index in range(self.model_.num_bindings): name = self.model_.get_binding_name(index) dtype = trt.nptype(self.model_.get_binding_dtype(index)) if self.model_.binding_is_input(index): if -1 in tuple(self.model_.get_binding_shape(index)): # dynamic dynamic = True self.context.set_binding_shape(index, tuple(self.model_.get_profile_shape(0, index)[2])) if dtype == np.float16: self.fp16 = True shape = tuple(self.context.get_binding_shape(index)) im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device) self.bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr())) self.binding_addrs = OrderedDict((n, d.ptr) for n, d in self.bindings.items()) batch_size = self.bindings['images'].shape[0] # if dynamic, this is instead max batch size elif self.xml: # OpenVINO LOGGER.info(f'Loading {w} for OpenVINO inference...') check_requirements(('openvino',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/ from openvino.runtime import Core, Layout, get_batch ie = Core() if not Path(w).is_file(): # if not *.xml w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin')) if network.get_parameters()[0].get_layout().empty: network.get_parameters()[0].set_layout(Layout("NCWH")) batch_dim = get_batch(network) if batch_dim.is_static: batch_size = batch_dim.get_length() self.executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2 self.output_layer = next(iter(self.executable_network.outputs)) elif self.tflite: LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu from tflite_runtime.interpreter import Interpreter, load_delegate except ImportError: import tensorflow as tf Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate, self.interpreter = tf.lite.Interpreter(model_path=w) self.interpreter.allocate_tensors() # Get input and output tensors. self.input_details = self.interpreter.get_input_details() self.output_details = self.interpreter.get_output_details() # Test model on random input data. input_data = np.array(np.random.random_sample((1,256,128,3)), dtype=np.float32) self.interpreter.set_tensor(self.input_details[0]['index'], input_data) self.interpreter.invoke() # The function `get_tensor()` returns a copy of the tensor data. output_data = self.interpreter.get_tensor(self.output_details[0]['index']) else: print('This model framework is not supported yet!') exit() @staticmethod def model_type(p='path/to/model.pt'): # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx from export import export_formats sf = list(export_formats().Suffix) # export suffixes check_suffix(p, sf) # checks types = [s in Path(p).name for s in sf] types[8] &= not types[9] # tflite &= not edgetpu return types def _preprocess(self, im_batch): images = [] for element in im_batch: image = self.to_pil(element) image = self.preprocess(image) images.append(image) images = torch.stack(images, dim=0) images = images.to(self.device) return images def forward(self, im_batch): # preprocess batch im_batch = self._preprocess(im_batch) # batch to half if self.fp16 and im_batch.dtype != torch.float16: im_batch = im_batch.half() # batch processing features = [] if self.pt: features = self.model(im_batch) elif self.jit: # TorchScript features = self.model(im_batch) elif self.onnx: # ONNX Runtime im_batch = im_batch.cpu().numpy() # torch to numpy features = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im_batch})[0] elif self.engine: # TensorRT if True and im_batch.shape != self.bindings['images'].shape: i_in, i_out = (self.model_.get_binding_index(x) for x in ('images', 'output')) self.context.set_binding_shape(i_in, im_batch.shape) # reshape if dynamic self.bindings['images'] = self.bindings['images']._replace(shape=im_batch.shape) self.bindings['output'].data.resize_(tuple(self.context.get_binding_shape(i_out))) s = self.bindings['images'].shape assert im_batch.shape == s, f"input size {im_batch.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}" self.binding_addrs['images'] = int(im_batch.data_ptr()) self.context.execute_v2(list(self.binding_addrs.values())) features = self.bindings['output'].data elif self.xml: # OpenVINO im_batch = im_batch.cpu().numpy() # FP32 features = self.executable_network([im_batch])[self.output_layer] else: print('Framework not supported at the moment, we are working on it...') exit() if isinstance(features, (list, tuple)): return self.from_numpy(features[0]) if len(features) == 1 else [self.from_numpy(x) for x in features] else: return self.from_numpy(features) def from_numpy(self, x): return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x def warmup(self, imgsz=[(256, 128, 3)]): # Warmup model by running inference once warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb if any(warmup_types) and self.device.type != 'cpu': im = [np.empty(*imgsz).astype(np.uint8)] # input for _ in range(2 if self.jit else 1): # self.forward(im) # warmup