""" run_youtube_vis.py Run example: run_youtube_vis.py --USE_PARALLEL False --METRICS HOTA --TRACKERS_TO_EVAL STEm_Seg Command Line Arguments: Defaults, # Comments Eval arguments: 'USE_PARALLEL': False, 'NUM_PARALLEL_CORES': 8, 'BREAK_ON_ERROR': True, # Raises exception and exits with error 'RETURN_ON_ERROR': False, # if not BREAK_ON_ERROR, then returns from function on error 'LOG_ON_ERROR': os.path.join(code_path, 'error_log.txt'), # if not None, save any errors into a log file. 'PRINT_RESULTS': True, 'PRINT_ONLY_COMBINED': False, 'PRINT_CONFIG': True, 'TIME_PROGRESS': True, 'DISPLAY_LESS_PROGRESS': True, 'OUTPUT_SUMMARY': True, 'OUTPUT_EMPTY_CLASSES': True, # If False, summary files are not output for classes with no detections 'OUTPUT_DETAILED': True, 'PLOT_CURVES': True, Dataset arguments: 'GT_FOLDER': os.path.join(code_path, 'data/gt/youtube_vis/youtube_vis_training'), # Location of GT data 'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/youtube_vis/youtube_vis_training'), # Trackers location 'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER) 'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder) 'CLASSES_TO_EVAL': None, # Classes to eval (if None, all classes) 'SPLIT_TO_EVAL': 'training', # Valid: 'training', 'val' 'PRINT_CONFIG': True, # Whether to print current config 'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER 'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER 'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL Metric arguments: 'METRICS': ['TrackMAP', 'HOTA', 'CLEAR', 'Identity'] """ import sys import os import argparse from multiprocessing import freeze_support sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import trackeval # noqa: E402 if __name__ == '__main__': freeze_support() # Command line interface: default_eval_config = trackeval.Evaluator.get_default_eval_config() # print only combined since TrackMAP is undefined for per sequence breakdowns default_eval_config['PRINT_ONLY_COMBINED'] = True default_dataset_config = trackeval.datasets.YouTubeVIS.get_default_dataset_config() default_metrics_config = {'METRICS': ['TrackMAP', 'HOTA', 'CLEAR', 'Identity']} config = {**default_eval_config, **default_dataset_config, **default_metrics_config} # Merge default configs parser = argparse.ArgumentParser() for setting in config.keys(): if type(config[setting]) == list or type(config[setting]) == type(None): parser.add_argument("--" + setting, nargs='+') else: parser.add_argument("--" + setting) args = parser.parse_args().__dict__ for setting in args.keys(): if args[setting] is not None: if type(config[setting]) == type(True): if args[setting] == 'True': x = True elif args[setting] == 'False': x = False else: raise Exception('Command line parameter ' + setting + 'must be True or False') elif type(config[setting]) == type(1): x = int(args[setting]) elif type(args[setting]) == type(None): x = None else: x = args[setting] config[setting] = x eval_config = {k: v for k, v in config.items() if k in default_eval_config.keys()} dataset_config = {k: v for k, v in config.items() if k in default_dataset_config.keys()} metrics_config = {k: v for k, v in config.items() if k in default_metrics_config.keys()} # Run code evaluator = trackeval.Evaluator(eval_config) dataset_list = [trackeval.datasets.YouTubeVIS(dataset_config)] metrics_list = [] for metric in [trackeval.metrics.TrackMAP, trackeval.metrics.HOTA, trackeval.metrics.CLEAR, trackeval.metrics.Identity]: if metric.get_name() in metrics_config['METRICS']: # specify TrackMAP config for YouTubeVIS if metric == trackeval.metrics.TrackMAP: default_track_map_config = metric.get_default_metric_config() default_track_map_config['USE_TIME_RANGES'] = False default_track_map_config['AREA_RANGES'] = [[0 ** 2, 128 ** 2], [ 128 ** 2, 256 ** 2], [256 ** 2, 1e5 ** 2]] metrics_list.append(metric(default_track_map_config)) else: metrics_list.append(metric()) if len(metrics_list) == 0: raise Exception('No metrics selected for evaluation') evaluator.evaluate(dataset_list, metrics_list)