import numpy as np from abc import ABC, abstractmethod from .. import _timing from ..utils import TrackEvalException class _BaseMetric(ABC): @abstractmethod def __init__(self): self.plottable = False self.integer_fields = [] self.float_fields = [] self.array_labels = [] self.integer_array_fields = [] self.float_array_fields = [] self.fields = [] self.summary_fields = [] self.registered = False ##################################################################### # Abstract functions for subclasses to implement @_timing.time @abstractmethod def eval_sequence(self, data): ... @abstractmethod def combine_sequences(self, all_res): ... @abstractmethod def combine_classes_class_averaged(self, all_res, ignore_empty_classes=False): ... @ abstractmethod def combine_classes_det_averaged(self, all_res): ... def plot_single_tracker_results(self, all_res, tracker, output_folder, cls): """Plot results of metrics, only valid for metrics with self.plottable""" if self.plottable: raise NotImplementedError('plot_results is not implemented for metric %s' % self.get_name()) else: pass ##################################################################### # Helper functions which are useful for all metrics: @classmethod def get_name(cls): return cls.__name__ @staticmethod def _combine_sum(all_res, field): """Combine sequence results via sum""" return sum([all_res[k][field] for k in all_res.keys()]) @staticmethod def _combine_weighted_av(all_res, field, comb_res, weight_field): """Combine sequence results via weighted average""" return sum([all_res[k][field] * all_res[k][weight_field] for k in all_res.keys()]) / np.maximum(1.0, comb_res[ weight_field]) def print_table(self, table_res, tracker, cls): """Prints table of results for all sequences""" print('') metric_name = self.get_name() self._row_print([metric_name + ': ' + tracker + '-' + cls] + self.summary_fields) for seq, results in sorted(table_res.items()): if seq == 'COMBINED_SEQ': continue summary_res = self._summary_row(results) self._row_print([seq] + summary_res) summary_res = self._summary_row(table_res['COMBINED_SEQ']) self._row_print(['COMBINED'] + summary_res) def _summary_row(self, results_): vals = [] for h in self.summary_fields: if h in self.float_array_fields: vals.append("{0:1.5g}".format(100 * np.mean(results_[h]))) elif h in self.float_fields: vals.append("{0:1.5g}".format(100 * float(results_[h]))) elif h in self.integer_fields: vals.append("{0:d}".format(int(results_[h]))) else: raise NotImplementedError("Summary function not implemented for this field type.") return vals @staticmethod def _row_print(*argv): """Prints results in an evenly spaced rows, with more space in first row""" if len(argv) == 1: argv = argv[0] to_print = '%-35s' % argv[0] for v in argv[1:]: to_print += '%-10s' % str(v) print(to_print) def summary_results(self, table_res): """Returns a simple summary of final results for a tracker""" return dict(zip(self.summary_fields, self._summary_row(table_res['COMBINED_SEQ']))) def detailed_results(self, table_res): """Returns detailed final results for a tracker""" # Get detailed field information detailed_fields = self.float_fields + self.integer_fields for h in self.float_array_fields + self.integer_array_fields: for alpha in [int(100*x) for x in self.array_labels]: detailed_fields.append(h + '___' + str(alpha)) detailed_fields.append(h + '___AUC') # Get detailed results detailed_results = {} for seq, res in table_res.items(): detailed_row = self._detailed_row(res) if len(detailed_row) != len(detailed_fields): raise TrackEvalException( 'Field names and data have different sizes (%i and %i)' % (len(detailed_row), len(detailed_fields))) detailed_results[seq] = dict(zip(detailed_fields, detailed_row)) return detailed_results def _detailed_row(self, res): detailed_row = [] for h in self.float_fields + self.integer_fields: detailed_row.append(res[h]) for h in self.float_array_fields + self.integer_array_fields: for i, alpha in enumerate([int(100 * x) for x in self.array_labels]): detailed_row.append(res[h][i]) detailed_row.append(np.mean(res[h])) return detailed_row