import numpy as np from scipy.optimize import linear_sum_assignment from ._base_metric import _BaseMetric from .. import _timing from collections import defaultdict from .. import utils class IDEucl(_BaseMetric): """Class which implements the ID metrics""" @staticmethod def get_default_config(): """Default class config values""" default_config = { 'THRESHOLD': 0.4, # Similarity score threshold required for a IDTP match. 0.4 for IDEucl. 'PRINT_CONFIG': True, # Whether to print the config information on init. Default: False. } return default_config def __init__(self, config=None): super().__init__() self.fields = ['IDEucl'] self.float_fields = self.fields self.summary_fields = self.fields # Configuration options: self.config = utils.init_config(config, self.get_default_config(), self.get_name()) self.threshold = float(self.config['THRESHOLD']) @_timing.time def eval_sequence(self, data): """Calculates IDEucl metrics for all frames""" # Initialise results res = {'IDEucl' : 0} # Return result quickly if tracker or gt sequence is empty if data['num_tracker_dets'] == 0 or data['num_gt_dets'] == 0.: return res data['centroid'] = [] for t, gt_det in enumerate(data['gt_dets']): # import pdb;pdb.set_trace() data['centroid'].append(self._compute_centroid(gt_det)) oid_hid_cent = defaultdict(list) oid_cent = defaultdict(list) for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])): matches_mask = np.greater_equal(data['similarity_scores'][t], self.threshold) # I hope the orders of ids and boxes are maintained in `data` for ind, gid in enumerate(gt_ids_t): oid_cent[gid].append(data['centroid'][t][ind]) match_idx_gt, match_idx_tracker = np.nonzero(matches_mask) for m_gid, m_tid in zip(match_idx_gt, match_idx_tracker): oid_hid_cent[gt_ids_t[m_gid], tracker_ids_t[m_tid]].append(data['centroid'][t][m_gid]) oid_hid_dist = {k : np.sum(np.linalg.norm(np.diff(np.array(v), axis=0), axis=1)) for k, v in oid_hid_cent.items()} oid_dist = {int(k) : np.sum(np.linalg.norm(np.diff(np.array(v), axis=0), axis=1)) for k, v in oid_cent.items()} unique_oid = np.unique([i[0] for i in oid_hid_dist.keys()]).tolist() unique_hid = np.unique([i[1] for i in oid_hid_dist.keys()]).tolist() o_len = len(unique_oid) h_len = len(unique_hid) dist_matrix = np.zeros((o_len, h_len)) for ((oid, hid), dist) in oid_hid_dist.items(): oid_ind = unique_oid.index(oid) hid_ind = unique_hid.index(hid) dist_matrix[oid_ind, hid_ind] = dist # opt_hyp_dist contains GT ID : max dist covered by track opt_hyp_dist = dict.fromkeys(oid_dist.keys(), 0.) cost_matrix = np.max(dist_matrix) - dist_matrix rows, cols = linear_sum_assignment(cost_matrix) for (row, col) in zip(rows, cols): value = dist_matrix[row, col] opt_hyp_dist[int(unique_oid[row])] = value assert len(opt_hyp_dist.keys()) == len(oid_dist.keys()) hyp_length = np.sum(list(opt_hyp_dist.values())) gt_length = np.sum(list(oid_dist.values())) id_eucl =np.mean([np.divide(a, b, out=np.zeros_like(a), where=b!=0) for a, b in zip(opt_hyp_dist.values(), oid_dist.values())]) res['IDEucl'] = np.divide(hyp_length, gt_length, out=np.zeros_like(hyp_length), where=gt_length!=0) return res def combine_classes_class_averaged(self, all_res, ignore_empty_classes=False): """Combines metrics across all classes by averaging over the class values. If 'ignore_empty_classes' is True, then it only sums over classes with at least one gt or predicted detection. """ res = {} for field in self.float_fields: if ignore_empty_classes: res[field] = np.mean([v[field] for v in all_res.values() if v['IDEucl'] > 0 + np.finfo('float').eps], axis=0) else: res[field] = np.mean([v[field] for v in all_res.values()], axis=0) return res def combine_classes_det_averaged(self, all_res): """Combines metrics across all classes by averaging over the detection values""" res = {} for field in self.float_fields: res[field] = self._combine_sum(all_res, field) res = self._compute_final_fields(res, len(all_res)) return res def combine_sequences(self, all_res): """Combines metrics across all sequences""" res = {} for field in self.float_fields: res[field] = self._combine_sum(all_res, field) res = self._compute_final_fields(res, len(all_res)) return res @staticmethod def _compute_centroid(box): box = np.array(box) if len(box.shape) == 1: centroid = (box[0:2] + box[2:4])/2 else: centroid = (box[:, 0:2] + box[:, 2:4])/2 return np.flip(centroid, axis=1) @staticmethod def _compute_final_fields(res, res_len): """ Exists only to match signature with the original Identiy class. """ return {k:v/res_len for k,v in res.items()}