import os os.system("pip install cython_bbox") import gradio as gr import tempfile import track import shutil from pathlib import Path from yolov5 import detect from PIL import Image # 目标检测 def Detect(image, image_type): if image_type == "红外图像": pt = "best.pt" cnf = "FLIR.yaml" else: pt = "yolov5s.pt" cnf = "coco128.yaml" # 创建临时文件夹 temp_path = tempfile.TemporaryDirectory(dir="./") temp_dir = temp_path.name # 临时图片的路径 temp_image_path = os.path.join(temp_dir, f"temp.jpg") # 存储临时图片 img = Image.fromarray(image) img.save(temp_image_path) # 结果图片的存储目录 temp_result_path = os.path.join(temp_dir, "tempresult") # 对临时图片进行检测 detect.run(source=temp_image_path, data=f"test_image/{cnf}", weights=f"weights/{pt}", project=f'./{temp_dir}',name = 'tempresult', hide_conf=False, conf_thres=0.35) # 结果图片的路径 temp_result_path = os.path.join(temp_result_path, os.listdir(temp_result_path)[0]) # 读取结果图片 result_image = Image.open(temp_result_path).copy() # 删除临时文件夹 temp_path.cleanup() return result_image # 候选图片 example_image= [ ["./test_image/1.jpg", "红外图像"], ["./test_image/2.jpg", "红外图像"], ["./test_image/3.jpg", "红外图像"], ["./test_image/8.jpg", "红外图像"], ["./test_image/5.jpg", "红外图像"], # ["./test_image/6.jpg]", "红外图像"], ["./test_image/4.jpg", "可见光图像"], ["./test_image/7.jpg", "可见光图像"] ] # 目标追踪 def Track(video, video_type, tracking_method): # 存储临时视频的文件夹 temp_dir = "./temp" # 先清空temp文件夹 shutil.rmtree("./temp") os.mkdir("./temp") # 获取视频的形式 if video_type == "红外视频": pt = "best2.pt" else: pt = "yolov5s.pt" # 获取视频的名字 video_name = os.path.basename(video) # 对视频进行检测 track.run(source=video, yolo_weights=Path(f"weights/{pt}"),reid_weights=Path("weights/osnet_x0_25_msmt17.pt") , project=Path(f'./{temp_dir}'), name = 'tempresult', tracking_method=tracking_method) # 结果视频的路径 temp_result_path = os.path.join(f'./{temp_dir}', "tempresult", video_name) # 返回结果视频的路径 return temp_result_path # 候选视频 example_video= [ ["./video/5.mp4", "红外视频", "bytetrack"], ["./video/bicyclecity.mp4","红外视频", "strongsort"], ["./video/9.mp4", "红外视频", "bytetrack"], ["./video/8.mp4", "红外视频", "strongsort"], ["./video/4.mp4", "红外视频", "bytetrack"], ["./video/car.mp4", "红外视频", "strongsort"], ["./video/caixukun.mp4", "可见光视频", "bytetrack"], ["./video/palace.mp4", "可见光视频", "bytetrack"], ] iface_Image = gr.Interface(fn=Detect, inputs=[gr.Image(label="上传一张图像(jpg格式)"), gr.Radio(["红外图像", "可见光图像"], label="image type", info="选择图片的形式", value="红外图像")], outputs=gr.Image(label="检测结果"), examples=example_image ) iface_video = gr.Interface(fn=Track, inputs=[gr.Video(label="上传一段视频(mp4格式)"), gr.Radio(["红外视频", "可见光视频"], label="video type", info="选择视频的形式", value="红外视频"), gr.Radio(["bytetrack", "strongsort"], label="track methond", info="建议使用bytetrack, strongsort在cpu上运行很慢", value="bytetrack")], outputs=gr.Video(label="追踪结果"), examples=example_video ) demo = gr.TabbedInterface([iface_video, iface_Image], tab_names=["目标追踪", "目标检测"], title="红外目标检测追踪") demo.launch()