""" Vizualize: Code which converts .txt rle tracking results into a visual .png format. Author: Jonathon Luiten """ import os import sys from multiprocessing.pool import Pool from multiprocessing import freeze_support sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))) from trackeval.baselines import baseline_utils as butils from trackeval.utils import get_code_path from trackeval.datasets.rob_mots_classmap import cls_id_to_name code_path = get_code_path() config = { # Tracker format: 'INPUT_FOL': os.path.join(code_path, 'data/trackers/rob_mots/{split}/STP/data/{bench}'), 'OUTPUT_FOL': os.path.join(code_path, 'data/viz/rob_mots/{split}/STP/data/{bench}'), # GT format: # 'INPUT_FOL': os.path.join(code_path, 'data/gt/rob_mots/{split}/{bench}/data/'), # 'OUTPUT_FOL': os.path.join(code_path, 'data/gt_viz/rob_mots/{split}/{bench}/'), 'SPLIT': 'train', # valid: 'train', 'val', 'test'. 'Benchmarks': None, # If None, all benchmarks in SPLIT. 'Num_Parallel_Cores': None, # If None, run without parallel. } def do_sequence(seq_file): # Folder to save resulting visualization in out_fol = seq_file.replace(config['INPUT_FOL'].format(split=config['SPLIT'], bench=bench), config['OUTPUT_FOL'].format(split=config['SPLIT'], bench=bench)).replace('.txt', '') # Load input data from file (e.g. provided detections) # data format: data['cls'][t] = {'ids', 'scores', 'im_hs', 'im_ws', 'mask_rles'} data = butils.load_seq(seq_file) # Get frame size for visualizing empty frames im_h, im_w = butils.get_frame_size(data) # First run for each class. for cls, cls_data in data.items(): if cls >= 100: continue # Run for each timestep. for timestep, t_data in enumerate(cls_data): # Save out visualization out_file = os.path.join(out_fol, cls_id_to_name[cls], str(timestep).zfill(5) + '.png') butils.save_as_png(t_data, out_file, im_h, im_w) # Then run for all classes combined # Converts data from a class-separated to a class-combined format. data = butils.combine_classes(data) # Run for each timestep. for timestep, t_data in enumerate(data): # Save out visualization out_file = os.path.join(out_fol, 'all_classes', str(timestep).zfill(5) + '.png') butils.save_as_png(t_data, out_file, im_h, im_w) print('DONE:', seq_file) if __name__ == '__main__': # Required to fix bug in multiprocessing on windows. freeze_support() # Obtain list of sequences to run tracker for. if config['Benchmarks']: benchmarks = config['Benchmarks'] else: benchmarks = ['davis_unsupervised', 'kitti_mots', 'youtube_vis', 'ovis', 'bdd_mots', 'tao'] if config['SPLIT'] != 'train': benchmarks += ['waymo', 'mots_challenge'] seqs_todo = [] for bench in benchmarks: bench_fol = config['INPUT_FOL'].format(split=config['SPLIT'], bench=bench) seqs_todo += [os.path.join(bench_fol, seq) for seq in os.listdir(bench_fol)] # Run in parallel if config['Num_Parallel_Cores']: with Pool(config['Num_Parallel_Cores']) as pool: results = pool.map(do_sequence, seqs_todo) # Run in series else: for seq_todo in seqs_todo: do_sequence(seq_todo)