import numpy as np from scipy.optimize import linear_sum_assignment from ._base_metric import _BaseMetric from .. import _timing from .. import utils class Identity(_BaseMetric): """Class which implements the ID metrics""" @staticmethod def get_default_config(): """Default class config values""" default_config = { 'THRESHOLD': 0.5, # Similarity score threshold required for a IDTP match. Default 0.5. 'PRINT_CONFIG': True, # Whether to print the config information on init. Default: False. } return default_config def __init__(self, config=None): super().__init__() self.integer_fields = ['IDTP', 'IDFN', 'IDFP'] self.float_fields = ['IDF1', 'IDR', 'IDP'] self.fields = self.float_fields + self.integer_fields self.summary_fields = self.fields # Configuration options: self.config = utils.init_config(config, self.get_default_config(), self.get_name()) self.threshold = float(self.config['THRESHOLD']) @_timing.time def eval_sequence(self, data): """Calculates ID metrics for one sequence""" # Initialise results res = {} for field in self.fields: res[field] = 0 # Return result quickly if tracker or gt sequence is empty if data['num_tracker_dets'] == 0: res['IDFN'] = data['num_gt_dets'] return res if data['num_gt_dets'] == 0: res['IDFP'] = data['num_tracker_dets'] return res # Variables counting global association potential_matches_count = np.zeros((data['num_gt_ids'], data['num_tracker_ids'])) gt_id_count = np.zeros(data['num_gt_ids']) tracker_id_count = np.zeros(data['num_tracker_ids']) # First loop through each timestep and accumulate global track information. for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])): # Count the potential matches between ids in each timestep matches_mask = np.greater_equal(data['similarity_scores'][t], self.threshold) match_idx_gt, match_idx_tracker = np.nonzero(matches_mask) potential_matches_count[gt_ids_t[match_idx_gt], tracker_ids_t[match_idx_tracker]] += 1 # Calculate the total number of dets for each gt_id and tracker_id. gt_id_count[gt_ids_t] += 1 tracker_id_count[tracker_ids_t] += 1 # Calculate optimal assignment cost matrix for ID metrics num_gt_ids = data['num_gt_ids'] num_tracker_ids = data['num_tracker_ids'] fp_mat = np.zeros((num_gt_ids + num_tracker_ids, num_gt_ids + num_tracker_ids)) fn_mat = np.zeros((num_gt_ids + num_tracker_ids, num_gt_ids + num_tracker_ids)) fp_mat[num_gt_ids:, :num_tracker_ids] = 1e10 fn_mat[:num_gt_ids, num_tracker_ids:] = 1e10 for gt_id in range(num_gt_ids): fn_mat[gt_id, :num_tracker_ids] = gt_id_count[gt_id] fn_mat[gt_id, num_tracker_ids + gt_id] = gt_id_count[gt_id] for tracker_id in range(num_tracker_ids): fp_mat[:num_gt_ids, tracker_id] = tracker_id_count[tracker_id] fp_mat[tracker_id + num_gt_ids, tracker_id] = tracker_id_count[tracker_id] fn_mat[:num_gt_ids, :num_tracker_ids] -= potential_matches_count fp_mat[:num_gt_ids, :num_tracker_ids] -= potential_matches_count # Hungarian algorithm match_rows, match_cols = linear_sum_assignment(fn_mat + fp_mat) # Accumulate basic statistics res['IDFN'] = fn_mat[match_rows, match_cols].sum().astype(np.int) res['IDFP'] = fp_mat[match_rows, match_cols].sum().astype(np.int) res['IDTP'] = (gt_id_count.sum() - res['IDFN']).astype(np.int) # Calculate final ID scores res = self._compute_final_fields(res) return res def combine_classes_class_averaged(self, all_res, ignore_empty_classes=False): """Combines metrics across all classes by averaging over the class values. If 'ignore_empty_classes' is True, then it only sums over classes with at least one gt or predicted detection. """ res = {} for field in self.integer_fields: if ignore_empty_classes: res[field] = self._combine_sum({k: v for k, v in all_res.items() if v['IDTP'] + v['IDFN'] + v['IDFP'] > 0 + np.finfo('float').eps}, field) else: res[field] = self._combine_sum({k: v for k, v in all_res.items()}, field) for field in self.float_fields: if ignore_empty_classes: res[field] = np.mean([v[field] for v in all_res.values() if v['IDTP'] + v['IDFN'] + v['IDFP'] > 0 + np.finfo('float').eps], axis=0) else: res[field] = np.mean([v[field] for v in all_res.values()], axis=0) return res def combine_classes_det_averaged(self, all_res): """Combines metrics across all classes by averaging over the detection values""" res = {} for field in self.integer_fields: res[field] = self._combine_sum(all_res, field) res = self._compute_final_fields(res) return res def combine_sequences(self, all_res): """Combines metrics across all sequences""" res = {} for field in self.integer_fields: res[field] = self._combine_sum(all_res, field) res = self._compute_final_fields(res) return res @staticmethod def _compute_final_fields(res): """Calculate sub-metric ('field') values which only depend on other sub-metric values. This function is used both for both per-sequence calculation, and in combining values across sequences. """ res['IDR'] = res['IDTP'] / np.maximum(1.0, res['IDTP'] + res['IDFN']) res['IDP'] = res['IDTP'] / np.maximum(1.0, res['IDTP'] + res['IDFP']) res['IDF1'] = res['IDTP'] / np.maximum(1.0, res['IDTP'] + 0.5 * res['IDFP'] + 0.5 * res['IDFN']) return res