# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license """ Experimental modules """ import math import numpy as np import torch import torch.nn as nn from yolov5.utils.downloads import attempt_download class Sum(nn.Module): # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, n, weight=False): # n: number of inputs super().__init__() self.weight = weight # apply weights boolean self.iter = range(n - 1) # iter object if weight: self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights def forward(self, x): y = x[0] # no weight if self.weight: w = torch.sigmoid(self.w) * 2 for i in self.iter: y = y + x[i + 1] * w[i] else: for i in self.iter: y = y + x[i + 1] return y class MixConv2d(nn.Module): # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595 def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy super().__init__() n = len(k) # number of convolutions if equal_ch: # equal c_ per group i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices c_ = [(i == g).sum() for g in range(n)] # intermediate channels else: # equal weight.numel() per group b = [c2] + [0] * n a = np.eye(n + 1, n, k=-1) a -= np.roll(a, 1, axis=1) a *= np.array(k) ** 2 a[0] = 1 c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b self.m = nn.ModuleList([ nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)]) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() def forward(self, x): return self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) class Ensemble(nn.ModuleList): # Ensemble of models def __init__(self): super().__init__() def forward(self, x, augment=False, profile=False, visualize=False): y = [module(x, augment, profile, visualize)[0] for module in self] # y = torch.stack(y).max(0)[0] # max ensemble # y = torch.stack(y).mean(0) # mean ensemble y = torch.cat(y, 1) # nms ensemble return y, None # inference, train output def attempt_load(weights, device=None, inplace=True, fuse=True): # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a from models.yolo import Detect, Model model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: ckpt = torch.load(attempt_download(w), map_location='cpu') # load ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model # Model compatibility updates if not hasattr(ckpt, 'stride'): ckpt.stride = torch.tensor([32.]) if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)): ckpt.names = dict(enumerate(ckpt.names)) # convert to dict model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode # Module compatibility updates for m in model.modules(): t = type(m) if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model): m.inplace = inplace # torch 1.7.0 compatibility if t is Detect and not isinstance(m.anchor_grid, list): delattr(m, 'anchor_grid') setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl) elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model if len(model) == 1: return model[-1] # Return detection ensemble print(f'Ensemble created with {weights}\n') for k in 'names', 'nc', 'yaml': setattr(model, k, getattr(model[0], k)) model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}' return model