import os os.system("pip install -e git+https://github.com/samson-wang/cython_bbox.git#egg=cython-bbox") import gradio as gr import tempfile import track import shutil from pathlib import Path from yolov5 import detect from PIL import Image # 目标检测 def Detect(image): # 创建临时文件夹 temp_path = tempfile.TemporaryDirectory(dir="./") temp_dir = temp_path.name # 临时图片的路径 temp_image_path = os.path.join(temp_dir, f"temp.jpg") # 存储临时图片 img = Image.fromarray(image) img.save(temp_image_path) # 结果图片的存储目录 temp_result_path = os.path.join(temp_dir, "tempresult") # 对临时图片进行检测 detect.run(source=temp_image_path, data="test_image/FLIR.yaml", weights="weights/best.pt", project=f'./{temp_dir}',name = 'tempresult', hide_conf=False, conf_thres=0.35) # 结果图片的路径 temp_result_path = os.path.join(temp_result_path, os.listdir(temp_result_path)[0]) # 读取结果图片 result_image = Image.open(temp_result_path).copy() # 删除临时文件夹 temp_path.cleanup() return result_image # 候选图片 example_image= [ "./test_image/video-2SReBn5LtAkL5HMj2-frame-005072-MA7NCLQGoqq9aHaiL.jpg", "./test_image/video-2rsjnZFyGQGeynfbv-frame-003708-6fPQbB7jtibwaYAE7.jpg", "./test_image/video-2SReBn5LtAkL5HMj2-frame-000317-HTgPBFgZyPdwQnNvE.jpg", "./test_image/video-jNQtRj6NGycZDEXpe-frame-002515-J3YntG8ntvZheKK3P.jpg", "./test_image/video-kDDWXrnLSoSdHCZ7S-frame-003063-eaKjPvPskDPjenZ8S.jpg", "./test_image/video-r68Yr9RPWEp5fW2ZF-frame-000333-X6K5iopqbmjKEsSqN.jpg" ] # 目标追踪 def Track(video, tracking_method): # 存储临时视频的文件夹 temp_dir = "./temp" # 先清空temp文件夹 shutil.rmtree("./temp") os.mkdir("./temp") # 获取视频的名字 video_name = os.path.basename(video) # 对视频进行检测 track.run(source=video, yolo_weights=Path("weights/best2.pt"),reid_weights=Path("weights/osnet_x0_25_msmt17.pt") , project=Path(f'./{temp_dir}'),name = 'tempresult', tracking_method=tracking_method) # 结果视频的路径 temp_result_path = os.path.join(f'./{temp_dir}', "tempresult", video_name) # 返回结果视频的路径 return temp_result_path # 候选视频 example_video= [ ["./video/5.mp4", None], ["./video/bicyclecity.mp4", None], ["./video/9.mp4", None], ["./video/8.mp4", None], ["./video/4.mp4", None], ["./video/car.mp4", None], ] iface_Image = gr.Interface(fn=Detect, inputs=gr.Image(label="上传一张红外图像,仅支持jpg格式"), outputs=gr.Image(label="检测结果"), examples=example_image) iface_video = gr.Interface(fn=Track, inputs=[gr.Video(label="上传段红外视频,仅支持mp4格式"), gr.Radio(["bytetrack", "strongsort"], label="track methond", info="选择追踪器", value="bytetrack")], outputs=gr.Video(label="追踪结果"), examples=example_video) demo = gr.TabbedInterface([iface_video, iface_Image], tab_names=["目标追踪", "目标检测"], title="红外目标检测追踪") demo.launch(share=True)