initial commit
Browse files
ex6.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import MobileViTFeatureExtractor, MobileViTForSemanticSegmentation
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/deeplabv3-mobilevit-small")
|
7 |
+
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small")
|
8 |
+
|
9 |
+
#(21 classes)
|
10 |
+
COLORS = np.array([
|
11 |
+
[0, 0, 0],
|
12 |
+
[128, 0, 0],
|
13 |
+
[0, 128, 0],
|
14 |
+
[128, 128, 0],
|
15 |
+
[0, 0, 128],
|
16 |
+
[128, 0, 128],
|
17 |
+
[0, 128, 128],
|
18 |
+
[128, 128, 128],
|
19 |
+
[64, 0, 0],
|
20 |
+
[192, 0, 0],
|
21 |
+
[64, 128, 0],
|
22 |
+
[192, 128, 0],
|
23 |
+
[64, 0, 128],
|
24 |
+
[192, 0, 128],
|
25 |
+
[64, 128, 128],
|
26 |
+
[192, 128, 128],
|
27 |
+
[0, 64, 0],
|
28 |
+
[128, 64, 0],
|
29 |
+
[0, 192, 0],
|
30 |
+
[128, 192, 0],
|
31 |
+
[0, 64, 128],
|
32 |
+
[128, 64, 128]
|
33 |
+
], dtype=np.uint8) # Ensure the data type is uint8 for image processing
|
34 |
+
|
35 |
+
def segment_image(image):
|
36 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
37 |
+
|
38 |
+
outputs = model(**inputs)
|
39 |
+
logits = outputs.logits
|
40 |
+
predicted_mask = logits.argmax(1).squeeze(0).numpy()
|
41 |
+
|
42 |
+
colored_mask = COLORS[predicted_mask]
|
43 |
+
colored_mask_image = Image.fromarray(colored_mask)
|
44 |
+
colored_mask_resized = colored_mask_image.resize(image.size, Image.NEAREST)
|
45 |
+
|
46 |
+
return colored_mask_resized
|
47 |
+
|
48 |
+
interface = gr.Interface(
|
49 |
+
fn=segment_image,
|
50 |
+
inputs=gr.Image(type="pil"),
|
51 |
+
outputs="image",
|
52 |
+
title="Image Segmentation with MobileViT",
|
53 |
+
description="Upload an image to see the semantic segmentation result. The segmentation mask uses different colors to indicate different classes.",
|
54 |
+
)
|
55 |
+
|
56 |
+
interface.launch(share=True)
|
57 |
+
|