|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is based on https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py |
|
Ths copyright of pytorch/pytorch is a BSD-style license, as found in the LICENSE file. |
|
""" |
|
|
|
import math |
|
|
|
import numpy as np |
|
import paddle |
|
import paddle.nn as nn |
|
|
|
__all__ = [ |
|
"uniform_", |
|
"normal_", |
|
"constant_", |
|
"ones_", |
|
"zeros_", |
|
"xavier_uniform_", |
|
"xavier_normal_", |
|
"kaiming_uniform_", |
|
"kaiming_normal_", |
|
"linear_init_", |
|
"conv_init_", |
|
"reset_initialized_parameter", |
|
] |
|
|
|
|
|
def _no_grad_uniform_(tensor, a, b): |
|
with paddle.no_grad(): |
|
tensor.set_value(paddle.uniform(shape=tensor.shape, dtype=tensor.dtype, min=a, max=b)) |
|
return tensor |
|
|
|
|
|
def _no_grad_normal_(tensor, mean=0.0, std=1.0): |
|
with paddle.no_grad(): |
|
tensor.set_value(paddle.normal(mean=mean, std=std, shape=tensor.shape)) |
|
return tensor |
|
|
|
|
|
def _no_grad_fill_(tensor, value=0.0): |
|
with paddle.no_grad(): |
|
tensor.set_value(paddle.full_like(tensor, value, dtype=tensor.dtype)) |
|
return tensor |
|
|
|
|
|
def uniform_(tensor, a, b): |
|
""" |
|
Modified tensor inspace using uniform_ |
|
Args: |
|
tensor (paddle.Tensor): paddle Tensor |
|
a (float|int): min value. |
|
b (float|int): max value. |
|
Return: |
|
tensor |
|
""" |
|
return _no_grad_uniform_(tensor, a, b) |
|
|
|
|
|
def normal_(tensor, mean=0.0, std=1.0): |
|
""" |
|
Modified tensor inspace using normal_ |
|
Args: |
|
tensor (paddle.Tensor): paddle Tensor |
|
mean (float|int): mean value. |
|
std (float|int): std value. |
|
Return: |
|
tensor |
|
""" |
|
return _no_grad_normal_(tensor, mean, std) |
|
|
|
|
|
def constant_(tensor, value=0.0): |
|
""" |
|
Modified tensor inspace using constant_ |
|
Args: |
|
tensor (paddle.Tensor): paddle Tensor |
|
value (float|int): value to fill tensor. |
|
Return: |
|
tensor |
|
""" |
|
return _no_grad_fill_(tensor, value) |
|
|
|
|
|
def ones_(tensor): |
|
""" |
|
Modified tensor inspace using ones_ |
|
Args: |
|
tensor (paddle.Tensor): paddle Tensor |
|
Return: |
|
tensor |
|
""" |
|
return _no_grad_fill_(tensor, 1) |
|
|
|
|
|
def zeros_(tensor): |
|
""" |
|
Modified tensor inspace using zeros_ |
|
Args: |
|
tensor (paddle.Tensor): paddle Tensor |
|
Return: |
|
tensor |
|
""" |
|
return _no_grad_fill_(tensor, 0) |
|
|
|
|
|
def vector_(tensor, vector): |
|
with paddle.no_grad(): |
|
tensor.set_value(paddle.to_tensor(vector, dtype=tensor.dtype)) |
|
return tensor |
|
|
|
|
|
def _calculate_fan_in_and_fan_out(tensor, reverse=False): |
|
""" |
|
Calculate (fan_in, _fan_out) for tensor |
|
Args: |
|
tensor (Tensor): paddle.Tensor |
|
reverse (bool: False): tensor data format order, False by default as [fout, fin, ...]. e.g. : conv.weight [cout, cin, kh, kw] is False; linear.weight [cin, cout] is True |
|
Return: |
|
Tuple[fan_in, fan_out] |
|
""" |
|
if tensor.ndim < 2: |
|
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions") |
|
|
|
if reverse: |
|
num_input_fmaps, num_output_fmaps = tensor.shape[0], tensor.shape[1] |
|
else: |
|
num_input_fmaps, num_output_fmaps = tensor.shape[1], tensor.shape[0] |
|
|
|
receptive_field_size = 1 |
|
if tensor.ndim > 2: |
|
receptive_field_size = np.prod(tensor.shape[2:]) |
|
|
|
fan_in = num_input_fmaps * receptive_field_size |
|
fan_out = num_output_fmaps * receptive_field_size |
|
|
|
return fan_in, fan_out |
|
|
|
|
|
def xavier_uniform_(tensor, gain=1.0, reverse=False): |
|
""" |
|
Modified tensor inspace using xavier_uniform_ |
|
Args: |
|
tensor (paddle.Tensor): paddle Tensor |
|
gain (float): super parameter, 1. default. |
|
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...]. |
|
Return: |
|
tensor |
|
""" |
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse=reverse) |
|
std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) |
|
k = math.sqrt(3.0) * std |
|
return _no_grad_uniform_(tensor, -k, k) |
|
|
|
|
|
def xavier_normal_(tensor, gain=1.0, reverse=False): |
|
""" |
|
Modified tensor inspace using xavier_normal_ |
|
Args: |
|
tensor (paddle.Tensor): paddle Tensor |
|
gain (float): super parameter, 1. default. |
|
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...]. |
|
Return: |
|
tensor |
|
""" |
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse=reverse) |
|
std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) |
|
return _no_grad_normal_(tensor, 0, std) |
|
|
|
|
|
|
|
def _calculate_correct_fan(tensor, mode, reverse=False): |
|
mode = mode.lower() |
|
valid_modes = ["fan_in", "fan_out"] |
|
if mode not in valid_modes: |
|
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) |
|
|
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse) |
|
|
|
return fan_in if mode == "fan_in" else fan_out |
|
|
|
|
|
def _calculate_gain(nonlinearity, param=None): |
|
linear_fns = ["linear", "conv1d", "conv2d", "conv3d", "conv_transpose1d", "conv_transpose2d", "conv_transpose3d"] |
|
if nonlinearity in linear_fns or nonlinearity == "sigmoid": |
|
return 1 |
|
elif nonlinearity == "tanh": |
|
return 5.0 / 3 |
|
elif nonlinearity == "relu": |
|
return math.sqrt(2.0) |
|
elif nonlinearity == "leaky_relu": |
|
if param is None: |
|
negative_slope = 0.01 |
|
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): |
|
|
|
negative_slope = param |
|
else: |
|
raise ValueError("negative_slope {} not a valid number".format(param)) |
|
return math.sqrt(2.0 / (1 + negative_slope**2)) |
|
elif nonlinearity == "selu": |
|
return 3.0 / 4 |
|
else: |
|
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) |
|
|
|
|
|
def kaiming_uniform_(tensor, a=0, mode="fan_in", nonlinearity="leaky_relu", reverse=False): |
|
""" |
|
Modified tensor inspace using kaiming_uniform method |
|
Args: |
|
tensor (paddle.Tensor): paddle Tensor |
|
mode (str): ['fan_in', 'fan_out'], 'fin_in' defalut |
|
nonlinearity (str): nonlinearity method name |
|
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...]. |
|
Return: |
|
tensor |
|
""" |
|
fan = _calculate_correct_fan(tensor, mode, reverse) |
|
gain = _calculate_gain(nonlinearity, a) |
|
std = gain / math.sqrt(fan) |
|
k = math.sqrt(3.0) * std |
|
return _no_grad_uniform_(tensor, -k, k) |
|
|
|
|
|
def kaiming_normal_(tensor, a=0, mode="fan_in", nonlinearity="leaky_relu", reverse=False): |
|
""" |
|
Modified tensor inspace using kaiming_normal_ |
|
Args: |
|
tensor (paddle.Tensor): paddle Tensor |
|
mode (str): ['fan_in', 'fan_out'], 'fin_in' defalut |
|
nonlinearity (str): nonlinearity method name |
|
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...]. |
|
Return: |
|
tensor |
|
""" |
|
fan = _calculate_correct_fan(tensor, mode, reverse) |
|
gain = _calculate_gain(nonlinearity, a) |
|
std = gain / math.sqrt(fan) |
|
return _no_grad_normal_(tensor, 0, std) |
|
|
|
|
|
def linear_init_(module): |
|
bound = 1 / math.sqrt(module.weight.shape[0]) |
|
uniform_(module.weight, -bound, bound) |
|
uniform_(module.bias, -bound, bound) |
|
|
|
|
|
def conv_init_(module): |
|
bound = 1 / np.sqrt(np.prod(module.weight.shape[1:])) |
|
uniform_(module.weight, -bound, bound) |
|
if module.bias is not None: |
|
uniform_(module.bias, -bound, bound) |
|
|
|
|
|
def bias_init_with_prob(prior_prob=0.01): |
|
"""initialize conv/fc bias value according to a given probability value.""" |
|
bias_init = float(-np.log((1 - prior_prob) / prior_prob)) |
|
return bias_init |
|
|
|
|
|
@paddle.no_grad() |
|
def reset_initialized_parameter(model, include_self=True): |
|
""" |
|
Reset initialized parameter using following method for [conv, linear, embedding, bn] |
|
Args: |
|
model (paddle.Layer): paddle Layer |
|
include_self (bool: False): include_self for Layer.named_sublayers method. Indicate whether including itself |
|
Return: |
|
None |
|
""" |
|
for _, m in model.named_sublayers(include_self=include_self): |
|
if isinstance(m, nn.Conv2D): |
|
k = float(m._groups) / (m._in_channels * m._kernel_size[0] * m._kernel_size[1]) |
|
k = math.sqrt(k) |
|
_no_grad_uniform_(m.weight, -k, k) |
|
if hasattr(m, "bias") and getattr(m, "bias") is not None: |
|
_no_grad_uniform_(m.bias, -k, k) |
|
|
|
elif isinstance(m, nn.Linear): |
|
k = math.sqrt(1.0 / m.weight.shape[0]) |
|
_no_grad_uniform_(m.weight, -k, k) |
|
if hasattr(m, "bias") and getattr(m, "bias") is not None: |
|
_no_grad_uniform_(m.bias, -k, k) |
|
|
|
elif isinstance(m, nn.Embedding): |
|
_no_grad_normal_(m.weight, mean=0.0, std=1.0) |
|
|
|
elif isinstance(m, (nn.BatchNorm2D, nn.LayerNorm)): |
|
_no_grad_fill_(m.weight, 1.0) |
|
if hasattr(m, "bias") and getattr(m, "bias") is not None: |
|
_no_grad_fill_(m.bias, 0) |
|
|