|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import paddle |
|
from paddle import nn |
|
|
|
|
|
class LitEma(nn.Layer): |
|
""" |
|
Exponential Moving Average (EMA) of model updates |
|
|
|
Parameters: |
|
model: The model architecture for apply EMA. |
|
decay: The exponential decay. Default 0.9999. |
|
use_num_updates: Whether to use number of updates when computing |
|
averages. |
|
""" |
|
|
|
def __init__(self, model, decay=0.9999, use_num_upates=True): |
|
super().__init__() |
|
if decay < 0.0 or decay > 1.0: |
|
raise ValueError("Decay must be between 0 and 1") |
|
|
|
self.m_name2s_name = {} |
|
self.register_buffer("decay", paddle.to_tensor(decay, dtype=paddle.float32)) |
|
self.register_buffer( |
|
"num_updates", |
|
paddle.to_tensor(0, dtype=paddle.int64) if use_num_upates else paddle.to_tensor(-1, dtype=paddle.int64), |
|
) |
|
|
|
for name, p in model.named_parameters(): |
|
if not p.stop_gradient: |
|
|
|
s_name = name.replace(".", "") |
|
self.m_name2s_name.update({name: s_name}) |
|
self.register_buffer(s_name, p.clone().detach()) |
|
|
|
self.collected_params = [] |
|
|
|
def forward(self, model): |
|
decay = self.decay |
|
|
|
if self.num_updates >= 0: |
|
self.num_updates += 1 |
|
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates)) |
|
|
|
one_minus_decay = 1.0 - decay |
|
|
|
with paddle.no_grad(): |
|
m_param = dict(model.named_parameters()) |
|
shadow_params = dict(self.named_buffers()) |
|
|
|
for key in m_param: |
|
if not m_param[key].stop_gradient: |
|
sname = self.m_name2s_name[key] |
|
shadow_params[sname].scale_(decay) |
|
shadow_params[sname].add_(m_param[key] * one_minus_decay) |
|
else: |
|
assert key not in self.m_name2s_name |
|
|
|
def copy_to(self, model): |
|
m_param = dict(model.named_parameters()) |
|
shadow_params = dict(self.named_buffers()) |
|
for key in m_param: |
|
if not m_param[key].stop_gradient: |
|
m_param[key].copy_(shadow_params[self.m_name2s_name[key]], True) |
|
else: |
|
assert key not in self.m_name2s_name |
|
|
|
def store(self, parameters): |
|
""" |
|
Save the current parameters for restoring later. |
|
Args: |
|
parameters: Iterable of `EagerParamBase`; the parameters to be |
|
temporarily stored. |
|
""" |
|
self.collected_params = [param.clone() for param in parameters] |
|
|
|
def restore(self, parameters): |
|
""" |
|
Restore the parameters stored with the `store` method. |
|
Useful to validate the model with EMA parameters without affecting the |
|
original optimization process. Store the parameters before the |
|
`copy_to` method. After validation (or model saving), use this to |
|
restore the former parameters. |
|
Args: |
|
parameters: Iterable of `EagerParamBase`; the parameters to be |
|
updated with the stored parameters. |
|
""" |
|
for c_param, param in zip(self.collected_params, parameters): |
|
param.copy_(c_param, True) |
|
|