Spaces:
Running
Running
File size: 8,181 Bytes
9db3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import sys
if "APP_PATH" in os.environ:
os.chdir(os.environ["APP_PATH"])
# fix sys.path for import
sys.path.append(os.getcwd())
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" # For some reason, transformers decided to use .isin for a simple op, which is not supported on MPS
import gradio as gr
import pypdfium2
from texify.inference import batch_inference
from texify.model.model import load_model
from texify.model.processor import load_processor
from texify.output import replace_katex_invalid
from PIL import Image
MAX_WIDTH = 800
MAX_HEIGHT = 1000
def load_model_cached():
return load_model()
def load_processor_cached():
return load_processor()
def infer_image(pil_image, bbox, temperature, model, processor):
input_img = pil_image.crop(bbox)
model_output = batch_inference([input_img], model, processor, temperature=temperature)
return model_output[0]
def open_pdf(pdf_file):
return pypdfium2.PdfDocument(pdf_file)
def count_pdf(pdf_file):
doc = open_pdf(pdf_file)
return len(doc)
def get_page_image(pdf_file, page_num, dpi=96):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
def get_uploaded_image(in_file):
return Image.open(in_file).convert("RGB")
def resize_image(pil_image):
if pil_image is None:
return
pil_image.thumbnail((MAX_WIDTH, MAX_HEIGHT), Image.Resampling.LANCZOS)
def texify(img, box, temperature):
img_pil = Image.fromarray(img).convert("RGB")
bbox_list = []
if box is not None and len(box[1]) > 0 and len(sections) > 0:
for idx, ((x_start, y_start, x_end, y_end), _) in enumerate(sections):
left = min(x_start, x_end)
right = max(x_start, x_end)
top = min(y_start, y_end)
bottom = max(y_start, y_end)
bbox_list.append((left, top, right, bottom))
else:
bbox_list = [(0, 0, img_pil.width, img_pil.height)]
output = ""
inferences = [infer_image(img_pil, bbox, temperature, model, processor) for bbox in bbox_list]
for idx, inference in enumerate(reversed(inferences)):
output += f"### {len(sections) - idx}\n"
katex_markdown = replace_katex_invalid(inference)
output += katex_markdown + "\n"
output += "\n"
return output
# ROI means Region Of Interest. It is the region where the user clicks
# to specify the location of the watermark.
ROI_coordinates = {
'x_temp': 0,
'y_temp': 0,
'x_new': 0,
'y_new': 0,
'clicks': 0,
}
sections = []
def get_select_coordinates(img, evt: gr.SelectData):
# update new coordinates
ROI_coordinates['clicks'] += 1
ROI_coordinates['x_temp'] = ROI_coordinates['x_new']
ROI_coordinates['y_temp'] = ROI_coordinates['y_new']
ROI_coordinates['x_new'] = evt.index[0]
ROI_coordinates['y_new'] = evt.index[1]
# compare start end coordinates
x_start = ROI_coordinates['x_new'] if (ROI_coordinates['x_new'] < ROI_coordinates['x_temp']) else ROI_coordinates['x_temp']
y_start = ROI_coordinates['y_new'] if (ROI_coordinates['y_new'] < ROI_coordinates['y_temp']) else ROI_coordinates['y_temp']
x_end = ROI_coordinates['x_new'] if (ROI_coordinates['x_new'] > ROI_coordinates['x_temp']) else ROI_coordinates['x_temp']
y_end = ROI_coordinates['y_new'] if (ROI_coordinates['y_new'] > ROI_coordinates['y_temp']) else ROI_coordinates['y_temp']
if ROI_coordinates['clicks'] % 2 == 0:
sections[len(sections) - 1] = ((x_start, y_start, x_end, y_end), f"Mask {len(sections)}")
# both start and end point get
return (img, sections)
else:
point_width = int(img.shape[0]*0.05)
sections.append(((ROI_coordinates['x_new'], ROI_coordinates['y_new'],
ROI_coordinates['x_new'] + point_width, ROI_coordinates['y_new'] + point_width),
f"Click second point for Mask {len(sections) + 1}"))
return (img, sections)
def del_select_coordinates(img, evt: gr.SelectData):
del sections[evt.index]
# recreate section names
for i in range(len(sections)):
sections[i] = (sections[i][0], f"Mask {i + 1}")
# last section clicking second point not complete
if ROI_coordinates['clicks'] % 2 != 0:
if len(sections) == evt.index:
# delete last section
ROI_coordinates['clicks'] -= 1
else:
# recreate last section name for second point
ROI_coordinates['clicks'] -= 2
sections[len(sections) - 1] = (sections[len(sections) - 1][0], f"Click second point for Mask {len(sections) + 1}")
else:
ROI_coordinates['clicks'] -= 2
return (img[0], sections)
model = load_model_cached()
processor = load_processor_cached()
with gr.Blocks(title="Texify") as demo:
gr.Markdown("""
After the model loads, upload an image or a pdf, then draw a box around the equation or text you want to OCR by clicking and dragging.
Texify will convert it to Markdown with LaTeX math on the right.
If you have already cropped your image, select "OCR image" in the sidebar instead.
""")
with gr.Row():
with gr.Column():
in_file = gr.File(label="PDF file or image:", file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".webp"])
in_num = gr.Slider(label="Page number", minimum=1, maximum=100, value=1, step=1)
in_img = gr.Image(label="Select ROI of Image", type="numpy", sources=None)
in_temperature = gr.Slider(label="Generation temperature", minimum=0.0, maximum=1.0, value=0.0, step=0.05)
in_btn = gr.Button("OCR ROI")
with gr.Column():
gr.Markdown("""
### Usage tips
- Don't make your boxes too small or too large. See the examples and the video in the [README](https://github.com/vikParuchuri/texify) for more info.
- Texify is sensitive to how you draw the box around the text you want to OCR. If you get bad results, try selecting a slightly different box, or splitting the box into multiple.
- You can try changing the temperature value on the left if you don't get good results. This controls how "creative" the model is.
- Sometimes KaTeX won't be able to render an equation (red error text), but it will still be valid LaTeX. You can copy the LaTeX and render it elsewhere.
""")
in_box = gr.AnnotatedImage(
label="ROI",
color_map={
"ROI of OCR": "#9987FF",
"Click second point for ROI": "#f44336"}
)
markdown_result = gr.Markdown(label="Markdown of results")
def show_image(file, num=1):
sections = []
if file.endswith('.pdf'):
count = count_pdf(file)
img = get_page_image(file, num)
# Resize to max bounds
resize_image(img)
return [
gr.update(visible=True, maximum=count),
gr.update(value=img)]
else:
img = get_uploaded_image(file)
# Resize to max bounds
resize_image(img)
return [
gr.update(visible=False),
gr.update(value=img)]
in_file.upload(
fn=show_image,
inputs=[in_file],
outputs=[in_num, in_img],
)
in_num.change(
fn=show_image,
inputs=[in_file, in_num],
outputs=[in_num, in_img],
)
in_img.select(
fn=get_select_coordinates,
inputs=[in_img],
outputs=in_box
)
in_box.select(
fn=del_select_coordinates,
inputs=in_box,
outputs=in_box
)
in_btn.click(
fn=texify,
inputs=[in_img, in_box, in_temperature],
outputs=[markdown_result]
)
demo.launch()
|