File size: 7,407 Bytes
aea73e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding: utf-8 -*-
# Utility functions
#
# @ Fabian Hörst, fabian.hoerst@uk-essen.de
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen


import importlib
import logging
import sys

import types
from datetime import timedelta
from timeit import default_timer as timer
from typing import Dict, List, Optional, Tuple, Union

from utils.__init__ import logger


# Helper timing functions
def start_timer() -> float:
    """Returns the number of seconds passed since epoch. The epoch is the point where the time starts,
    and is platform dependent.

    Returns:
        float:  The number of seconds passed since epoch
    """
    return timer()


def end_timer(start_time: float, timed_event: str = "Time usage") -> None:
    """Prints the time passed from start_time.


    Args:
        start_time (float): The number of seconds passed since epoch when the timer started
        timed_event (str, optional): A string describing the activity being monitored. Defaults to "Time usage".
    """
    logger.info(f"{timed_event}: {timedelta(seconds=timer() - start_time)}")


def module_exists(
    *names: Union[List[str], str],
    error: str = "ignore",
    warn_every_time: bool = False,
    __INSTALLED_OPTIONAL_MODULES: Dict[str, bool] = {},
) -> Optional[Union[Tuple[types.ModuleType, ...], types.ModuleType]]:
    """Try to import optional dependencies.
    Ref: https://stackoverflow.com/a/73838546/4900327

    Args:
        names (Union(List(str), str)): The module name(s) to import. Str or list of strings.
        error (str, optional): What to do when a dependency is not found:
                * raise : Raise an ImportError.
                * warn: print a warning.
                * ignore: If any module is not installed, return None, otherwise, return the module(s).
            Defaults to "ignore".
        warn_every_time (bool, optional): Whether to warn every time an import is tried. Only applies when error="warn".
            Setting this to True will result in multiple warnings if you try to import the same library multiple times.
            Defaults to False.
    Raises:
        ImportError: ImportError of Module

    Returns:
        Optional[ModuleType, Tuple[ModuleType...]]: The imported module(s), if all are found.
            None is returned if any module is not found and `error!="raise"`.
    """
    assert error in {"raise", "warn", "ignore"}
    if isinstance(names, (list, tuple, set)):
        names: List[str] = list(names)
    else:
        assert isinstance(names, str)
        names: List[str] = [names]
    modules = []
    for name in names:
        try:
            module = importlib.import_module(name)
            modules.append(module)
            __INSTALLED_OPTIONAL_MODULES[name] = True
        except ImportError:
            modules.append(None)

    def error_msg(missing: Union[str, List[str]]):
        if not isinstance(missing, (list, tuple)):
            missing = [missing]
        missing_str: str = " ".join([f'"{name}"' for name in missing])
        dep_str = "dependencies"
        if len(missing) == 1:
            dep_str = "dependency"
        msg = f"Missing optional {dep_str} {missing_str}. Use pip or conda to install."
        return msg

    missing_modules: List[str] = [
        name for name, module in zip(names, modules) if module is None
    ]
    if len(missing_modules) > 0:
        if error == "raise":
            raise ImportError(error_msg(missing_modules))
        if error == "warn":
            for name in missing_modules:
                # Ensures warning is printed only once
                if warn_every_time is True or name not in __INSTALLED_OPTIONAL_MODULES:
                    logger.warning(f"Warning: {error_msg(name)}")
                    __INSTALLED_OPTIONAL_MODULES[name] = False
        return None
    if len(modules) == 1:
        return modules[0]
    return tuple(modules)


def close_logger(logger: logging.Logger) -> None:
    """Closing a logger savely

    Args:
        logger (logging.Logger): Logger to close
    """
    handlers = logger.handlers[:]
    for handler in handlers:
        logger.removeHandler(handler)
        handler.close()

    logger.handlers.clear()
    logging.shutdown()


class AverageMeter(object):
    """Computes and stores the average and current value

    Original-Code: https://github.com/facebookresearch/simsiam
    """

    def __init__(self, name, fmt=":f"):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
        return fmtstr.format(**self.__dict__)


def flatten_dict(d: dict, parent_key: str = "", sep: str = ".") -> dict:
    """Flatten a nested dictionary and insert the sep to seperate keys

    Args:
        d (dict): dict to flatten
        parent_key (str, optional): parent key name. Defaults to ''.
        sep (str, optional): Seperator. Defaults to '.'.

    Returns:
        dict: Flattened dict
    """
    items = []
    for k, v in d.items():
        new_key = parent_key + sep + k if parent_key else k
        if isinstance(v, dict):
            items.extend(flatten_dict(v, new_key, sep=sep).items())
        else:
            items.append((new_key, v))
    return dict(items)


def unflatten_dict(d: dict, sep: str = ".") -> dict:
    """Unflatten a flattened dictionary (created a nested dictionary)

    Args:
        d (dict): Dict to be nested
        sep (str, optional): Seperator of flattened keys. Defaults to '.'.

    Returns:
        dict: Nested dict
    """
    output_dict = {}
    for key, value in d.items():
        keys = key.split(sep)
        d = output_dict
        for k in keys[:-1]:
            d = d.setdefault(k, {})
        d[keys[-1]] = value

    return output_dict


def remove_parameter_tag(d: dict, sep: str = ".") -> dict:
    """Remove all paramter tags from dictionary

    Args:
        d (dict): Dict must be flattened with defined seperator
        sep (str, optional): Seperator used during flattening. Defaults to ".".

    Returns:
        dict: Dict with parameter tag removed
    """
    param_dict = {}
    for k, _ in d.items():
        unflattened_keys = k.split(sep)
        new_keys = []
        max_num_insert = len(unflattened_keys) - 1
        for i, k in enumerate(unflattened_keys):
            if i < max_num_insert and k != "parameters":
                new_keys.append(k)
        joined_key = sep.join(new_keys)
        param_dict[joined_key] = {}
    print(param_dict)
    for k, v in d.items():
        unflattened_keys = k.split(sep)
        new_keys = []
        max_num_insert = len(unflattened_keys) - 1
        for i, k in enumerate(unflattened_keys):
            if i < max_num_insert and k != "parameters":
                new_keys.append(k)
        joined_key = sep.join(new_keys)
        param_dict[joined_key][unflattened_keys[-1]] = v

    return param_dict

def get_size_of_dict(d: dict) -> int:
    size = sys.getsizeof(d)
    for key, value in d.items():
        size += sys.getsizeof(key)
        size += sys.getsizeof(value)
    return size