File size: 15,246 Bytes
aea73e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# -*- coding: utf-8 -*-
# Base Machine Learning Experiment
#
# @ Fabian Hörst, fabian.hoerst@uk-essen.de
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen

import copy
import inspect
import logging
import os
import random
import sys
from abc import abstractmethod
from pathlib import Path
from typing import Tuple, Union
import argparse

currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import yaml
from pydantic import BaseModel
from torch.nn.modules.loss import _Loss
from torch.optim import Optimizer
from torch.optim.lr_scheduler import ConstantLR, _LRScheduler
from torch.utils.data import Dataset, Sampler

from base_ml.base_optim import OPTI_DICT
from base_ml.base_validator import sweep_schema
from utils.logger import Logger
from utils.tools import flatten_dict, remove_parameter_tag, unflatten_dict

from base_ml.optim_factory import LayerDecayValueAssigner, create_optimizer


class BaseExperiment:
    """BaseExperiment Class

    An experiment consistsn of the follwing key methods:

        * run_experiment: Main Code for running the experiment with implemented coordinaten and training call
        *
        *
    Args:
        default_conf (dict): Default configuration
    """

    def __init__(self, default_conf: dict, checkpoint=None) -> None:
        # setup configuration
        self.default_conf = default_conf
        self.run_conf = None
        self.logger = logging.getLogger(__name__)

        # resolve_paths
        self.default_conf["logging"]["log_dir"] = str(
            Path(default_conf["logging"]["log_dir"]).resolve()
        )
        self.default_conf["logging"]["wandb_dir"] = str(
            Path(default_conf["logging"]["wandb_dir"]).resolve()
        )

        if checkpoint is not None:
            self.checkpoint = torch.load(checkpoint, map_location="cpu")
        else:
            self.checkpoint = None

        # seeding
        self.seed_run(seed=self.default_conf["random_seed"])

    @abstractmethod
    def run_experiment(self):
        """Experiment Code

        Main Code for running the experiment. The following steps should be performed:
        1.) Set run name
        2.) Initialize WandB and update config (According to Sweep or predefined)
        3.) Create Output directory and setup logger
        4.) Machine Learning Setup
            4.1) Loss functions
            4.2) Model
            4.3) Optimizer
            4.4) Scheduler
        5.) Load and Setup Dataset
        6.) Define Trainer
        7.) trainer.fit()

        Raises:
            NotImplementedError: Needs to be implemented
        """
        raise NotImplementedError

    @abstractmethod
    def get_train_model(self) -> nn.Module:
        """Retrieve torch model for training

        Raises:
            NotImplementedError: Needs to be implemented

        Returns:
            nn.Module: Torch Model
        """
        raise NotImplementedError

    @abstractmethod
    def get_loss_fn(self) -> _Loss:
        """Retrieve torch loss function for training

        Raises:
            NotImplementedError: Needs to be implemented

        Returns:
            _Loss: Loss function
        """
        raise NotImplementedError
    
    def get_argparser():
        parser = argparse.ArgumentParser('ConvNeXt training and evaluation script for image classification', add_help=False)

    # Optimization parameters
        parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
                            help='Optimizer (default: "adamw"')
        parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
                            help='Optimizer Epsilon (default: 1e-8)')
        parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
                            help='Optimizer Betas (default: None, use opt default)')
        parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
                            help='SGD momentum (default: 0.9)')
        parser.add_argument('--weight_decay', type=float, default=0.05,
                            help='weight decay (default: 0.05)')
        parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
            weight decay. We use a cosine schedule for WD and using a larger decay by
            the end of training improves performance for ViTs.""")    

        parser.add_argument('--lr', type=float, default=4e-3, metavar='LR',
                            help='learning rate (default: 4e-3), with total batch size 4096')
        parser.add_argument('--layer_decay', type=float, default=0.9999)


        return parser




    def get_optimizer(
        self, model: nn.Module, opt: str, hp: dict, layer_decay:float, 
    ) -> Optimizer:
        """Retrieve optimizer for training

        All Torch Optimizers are possible

        Args:
            model (nn.Module): Training model
            optimizer_name (str): Name of the optimizer, all current PyTorch Optimizer are possible
            hp (dict): Hyperparameter as dictionary. For further information,
                see documentation here: https://pytorch.org/docs/stable/optim.html#algorithms

        Raises:
            NotImplementedError: Raises error if an undefined Optimizer differing from torch is used

        Returns:
            Optimizer: PyTorch Optimizer
        """
        # if optimizer_name not in OPTI_DICT:
        #     raise NotImplementedError("Optimizer not known")

        if layer_decay < 1.0 or layer_decay > 1.0:
            num_layers = 12 # convnext layers divided into 12 parts, each with a different decayed lr value.
            
            assigner = LayerDecayValueAssigner(list(layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)))
        else:
            assigner = None

        #optim = OPTI_DICT[optimizer_name]
        # optimizer = optim(
        #     params=filter(lambda p: p.requires_grad, model.parameters()), **hp
        # )
        #optimizer = optim(params=model.parameters(), **hp)
        
        optimizer = create_optimizer(
            model, weight_decay=hp["weight_decay"], lr=hp["lr"], opt=opt, get_num_layer=assigner.get_layer_id, get_layer_scale=assigner.get_scale)
        
        self.logger.info(
            f"Loaded  Optimizer with following hyperparameters:"
        )
        self.logger.info(hp)

        return optimizer

    def get_scheduler(self, optimizer: Optimizer) -> _LRScheduler:
        """Retrieve learning rate scheduler for training

        Currently, just constant scheduler. Should be extended to add a configurable scheduler.
        Maybe reimplement in specific experiment file.

        Args:
            optimizer (Optimizer): Optimizer

        Returns:
            _LRScheduler: PyTorch Scheduler
        """
        scheduler = ConstantLR(optimizer, factor=1, total_iters=1000)
        self.logger.info("Scheduler: ConstantLR scheduler")
        return scheduler

    def get_sampler(self) -> Sampler:
        """Retrieve data sampler for training

        Raises:
            NotImplementedError: Needs to be implemented

        Returns:
            Sampler: Training sampler
        """
        raise NotImplementedError

    def get_train_dataset(self) -> Dataset:
        """Retrieve training dataset

        Raises:
            NotImplementedError: Needs to be implemented

        Returns:
            Dataset: Training dataset
        """
        raise NotImplementedError

    def get_val_dataset(self) -> Dataset:
        """Retrieve validation dataset

        Raises:
            NotImplementedError: Needs to be implemented

        Returns:
            Dataset: Validation dataset
        """
        raise NotImplementedError

    def load_file_split(
        self, fold: int = None
    ) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
        """Load the file split for training, validation and test

        If no fold is provided, the current file split is loaded. Otherwise the files in the fold are loaded

        The folder (filelist_path) must be built up in the following way:
            1.) No-Multifold:
            filelist_path:
                train_split.csv
                val_split.csv
                test_split.csv
            2.) Multifold:
            filelist_path:
                fold1:
                    train_split.csv
                    val_split.csv
                    test_split.csv
                fold2:
                    train_split.csv
                    val_split.csv
                    test_split.csv
                ...
                foldN:
                    train_split.csv
                    val_split.csv
                    test_split.csv

        Args:
            fold (int, optional): Fold. Defaults to None.

        Raises:
            NotImplementedError: Fold selection is currently not Implemented

        Returns:
            Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: Train, Val and Test split as Pandas Dataframe
        """
        filelist_path = Path(self.default_conf["split_path"]).resolve()
        self.logger.info(f"Loading filesplit from folder: {filelist_path}")
        if fold is None:
            train_split = pd.read_csv(filelist_path / "train_split.csv")
            val_split = pd.read_csv(filelist_path / "val_split.csv")
            test_split = pd.read_csv(filelist_path / "test_split.csv")
        else:
            train_split = pd.read_csv(filelist_path / f"fold{fold}" / "train_split.csv")
            val_split = pd.read_csv(filelist_path / f"fold{fold}" / "val_split.csv")
            test_split = None

        self.logger.info(f"Train size: {len(train_split)}")
        self.logger.info(f"Val-Split: {len(val_split)}")
        return train_split, val_split, test_split

    # Methods regarding logging and storing
    def instantiate_logger(self) -> Logger:
        """Instantiate a logger

        Returns:
            Logger: Logger
        """
        logger = Logger(
            level=self.default_conf["logging"]["level"].upper(),
            log_dir=Path(self.run_conf["logging"]["log_dir"]).resolve(),
            comment="logs",
            use_timestamp=False,
        )
        self.logger = logger.create_logger()
        return self.logger

    @staticmethod
    def create_output_dir(folder_path: Union[str, Path]) -> None:
        """Create folder at given path

        Args:
            folder_path (Union[str, Path]): Folder that should be created
        """
        folder_path = Path(folder_path).resolve()
        folder_path.mkdir(parents=True, exist_ok=True)

    def store_config(self) -> None:
        """Store the config file in the logging directory to keep track of the configuration."""
        # store in log directory
        with open(
            (Path(self.run_conf["logging"]["log_dir"]) / "config.yaml").resolve(), "w"
        ) as yaml_file:
            tmp_config = copy.deepcopy(self.run_conf)
            tmp_config["logging"]["log_dir"] = str(tmp_config["logging"]["log_dir"])

            yaml.dump(tmp_config, yaml_file, sort_keys=False)

        self.logger.debug(
            f"Stored config under: {(Path(self.run_conf['logging']['log_dir']) / 'config.yaml').resolve()}"
        )

    @staticmethod
    def extract_sweep_arguments(config: dict) -> Tuple[Union[BaseModel, dict]]:
        """Extract sweep argument from the provided dictionary

        The config dictionary must contain a "sweep" entry with the sweep configuration.
        The file structure is documented here: ./base_ml/base_validator.py
        We follow the official sweep guidlines of WandB
        Example Sweep files are provided in the ./configs/examples folder

        Args:
            config (dict): Dictionary with all configurations

        Raises:
            KeyError: Missing Sweep Keys

        Returns:
            Tuple[Union[BaseModel, dict]]: Sweep arguments
        """
        # validate sweep settings
        if "sweep" not in config:
            raise KeyError("No Sweep configuration provided")
        sweep_schema.validate(config["sweep"])

        sweep_conf = config["sweep"]

        # load parameters
        flattened_dict = flatten_dict(config, sep=".")
        filtered_dict = {
            k: v for k, v in flattened_dict.items() if "parameters" in k.split(".")
        }
        parameters = remove_parameter_tag(filtered_dict, sep=".")

        sweep_conf["parameters"] = parameters

        return sweep_conf

    def overwrite_sweep_values(self, run_conf: dict, sweep_run_conf: dict) -> None:
        """Overwrite run_conf file with the sweep values

        For the sweep, sweeping parameters are a flattened dict, with keys beeing specific with '.' separator.
        These dictionary with the sweep hyperparameter selection needs to be unflattened (convert '.' into nested dict)
        Afterward, keys are insertd in the run_conf dictionary

        Args:
            run_conf (dict): Current dictionary without sweep selected parameters
            sweep_run_conf (dict): Dictionary with the sweep config
        """
        flattened_run_conf = flatten_dict(run_conf, sep=".")
        filtered_dict = {
            k: v
            for k, v in flattened_run_conf.items()
            if "parameters" not in k.split(".")
        }
        run_parameters = {**filtered_dict, **sweep_run_conf}
        run_parameters = unflatten_dict(run_parameters, ".")

        self.run_conf = run_parameters

    @staticmethod
    def seed_run(seed: int) -> None:
        """Seed the experiment

        Args:
            seed (int): Seed
        """
        # seeding
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
        os.environ["PYTHONHASHSEED"] = str(seed)
        np.random.seed(seed)
        random.seed(seed)
        from packaging.version import parse, Version

        try:
            import tensorflow as tf
        except ImportError:
            pass
        else:
            if parse(tf.__version__) >= Version("2.0.0"):
                tf.random.set_seed(seed)
            elif parse(tf.__version__) <= Version("1.13.2"):
                tf.set_random_seed(seed)
            else:
                tf.compat.v1.set_random_seed(seed)

    @staticmethod
    def seed_worker(worker_id) -> None:
        """Seed a worker

        Args:
            worker_id (_type_): Worker ID
        """
        worker_seed = torch.initial_seed() % 2**32
        torch.manual_seed(worker_seed)
        torch.cuda.manual_seed_all(worker_seed)
        np.random.seed(worker_seed)
        random.seed(worker_seed)

    def close_remaining_logger(self) -> None:
        """Close all remaining loggers"""
        logger = logging.getLogger("__main__")
        for handler in logger.handlers:
            logger.removeHandler(handler)
            handler.close()
        logger.handlers.clear()
        logging.shutdown()