File size: 36,504 Bytes
aea73e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
# -*- coding: utf-8 -*-
# CellVit Experiment Class
#
# @ Fabian Hörst, fabian.hoerst@uk-essen.de
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import argparse
import copy
import datetime
import inspect
import os
import shutil
import sys

import yaml
import numpy as np
import math

currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)

import uuid
from pathlib import Path
from typing import Callable, Tuple, Union
import torch
from torchsummary import summary
from torchstat import stat
import albumentations as A
import torch
import torch.nn as nn
import wandb
from torch.optim import Optimizer
from torch.optim.lr_scheduler import (
    ConstantLR,
    CosineAnnealingLR,
    ExponentialLR,
    SequentialLR,
    _LRScheduler,
    CosineAnnealingWarmRestarts,
)
from torch.utils.data import (
    DataLoader,
    Dataset,
    RandomSampler,
    Sampler,
    Subset,
    WeightedRandomSampler,
)
from torchinfo import summary
from wandb.sdk.lib.runid import generate_id

from base_ml.base_early_stopping import EarlyStopping
from base_ml.base_experiment import BaseExperiment
from base_ml.base_loss import retrieve_loss_fn
from base_ml.base_trainer import BaseTrainer
from cell_segmentation.datasets.base_cell import CellDataset
from cell_segmentation.datasets.dataset_coordinator import select_dataset
from cell_segmentation.trainer.trainer_cellvit import CellViTTrainer
from models.segmentation.cell_segmentation.cellvit import CellViT

from utils.tools import close_logger


class WarmupCosineAnnealingLR(CosineAnnealingLR):
    def __init__(self, optimizer, T_max, eta_min=0, warmup_epochs=0, warmup_factor=0):
        super().__init__(optimizer, T_max=T_max, eta_min=eta_min)
        self.warmup_epochs = warmup_epochs
        self.warmup_factor = warmup_factor
        self.initial_lr = [group['lr'] for group in optimizer.param_groups]  #初始化的学习率

    def get_lr(self):
        if self.last_epoch < self.warmup_epochs:
            warmup_factor = self.warmup_factor + (1.0 - self.warmup_factor) * (self.last_epoch / self.warmup_epochs)
            return [base_lr * warmup_factor for base_lr in self.initial_lr]
        else:
            return [base_lr * self.get_lr_ratio() for base_lr in self.initial_lr]

    def get_lr_ratio(self):
        T_cur = min(self.last_epoch - self.warmup_epochs, self.T_max - self.warmup_epochs)
        return 0.5 * (1 + math.cos(math.pi * T_cur / (self.T_max - self.warmup_epochs)))



class ExperimentCellVitPanNuke(BaseExperiment):
    def __init__(self, default_conf: dict, checkpoint=None) -> None:
        super().__init__(default_conf, checkpoint)
        self.load_dataset_setup(dataset_path=self.default_conf["data"]["dataset_path"])

    def run_experiment(self) -> Tuple[Path, dict, nn.Module, dict]:
        """Main Experiment Code"""
        ### Setup
        # close loggers
        self.close_remaining_logger()

         # Initialize distributed training environment
    
        
        # get the config for the current run
        self.run_conf = copy.deepcopy(self.default_conf)
        self.run_conf["dataset_config"] = self.dataset_config
        self.run_name = f"{datetime.datetime.now().strftime('%Y-%m-%dT%H%M%S')}_{self.run_conf['logging']['log_comment']}"

        wandb_run_id = generate_id()
        resume = None
        if self.checkpoint is not None:
            wandb_run_id = self.checkpoint["wandb_id"]
            resume = "must"
            self.run_name = self.checkpoint["run_name"]

        # initialize wandb
        run = wandb.init(
            project=self.run_conf["logging"]["project"],
            tags=self.run_conf["logging"].get("tags", []),
            name=self.run_name,
            notes=self.run_conf["logging"]["notes"],
            dir=self.run_conf["logging"]["wandb_dir"],
            mode=self.run_conf["logging"]["mode"].lower(),
            group=self.run_conf["logging"].get("group", str(uuid.uuid4())),
            allow_val_change=True,
            id=wandb_run_id,
            resume=resume,
            settings=wandb.Settings(start_method="fork"),
        )

        # get ids
        self.run_conf["logging"]["run_id"] = run.id
        self.run_conf["logging"]["wandb_file"] = run.id

        # overwrite configuration with sweep values are leave them as they are
        if self.run_conf["run_sweep"] is True:
            self.run_conf["logging"]["sweep_id"] = run.sweep_id
            self.run_conf["logging"]["log_dir"] = str(
                Path(self.default_conf["logging"]["log_dir"])
                / f"sweep_{run.sweep_id}"
                / f"{self.run_name}_{self.run_conf['logging']['run_id']}"
            )
            self.overwrite_sweep_values(self.run_conf, run.config)
        else:
            self.run_conf["logging"]["log_dir"] = str(
                Path(self.default_conf["logging"]["log_dir"]) / self.run_name
            )

        # update wandb
        wandb.config.update(
            self.run_conf, allow_val_change=True
        )  # this may lead to the problem

        # create output folder, instantiate logger and store config
        self.create_output_dir(self.run_conf["logging"]["log_dir"])
        self.logger = self.instantiate_logger()
        self.logger.info("Instantiated Logger. WandB init and config update finished.")
        self.logger.info(f"Run ist stored here: {self.run_conf['logging']['log_dir']}")
        self.store_config()

        self.logger.info(
            f"Cuda devices: {[torch.cuda.device(i) for i in range(torch.cuda.device_count())]}"
        )
        ### Machine Learning
        #device = f"cuda:{2}"
        #device = torch.device("cuda:2")

        device = f"cuda:{self.run_conf['gpu']}"
        self.logger.info(f"Using GPU: {device}")
        self.logger.info(f"Using device: {device}")

        # loss functions
        loss_fn_dict = self.get_loss_fn(self.run_conf.get("loss", {}))
        self.logger.info("Loss functions:")
        self.logger.info(loss_fn_dict)

        # model
        model = self.get_train_model(
            pretrained_encoder=self.run_conf["model"].get("pretrained_encoder", None),
            pretrained_model=self.run_conf["model"].get("pretrained", None),
            backbone_type=self.run_conf["model"].get("backbone", "default"),
            shared_decoders=self.run_conf["model"].get("shared_decoders", False),
            regression_loss=self.run_conf["model"].get("regression_loss", False),
        )
        model.to(device)

        # optimizer
        optimizer = self.get_optimizer(
            model,
            self.run_conf["training"]["optimizer"].lower(),
            self.run_conf["training"]["optimizer_hyperparameter"],
            #self.run_conf["training"]["optimizer"],
            self.run_conf["training"]["layer_decay"],  

        )

        # scheduler
        scheduler = self.get_scheduler(
            optimizer=optimizer,
            scheduler_type=self.run_conf["training"]["scheduler"]["scheduler_type"],
        )

        # early stopping (no early stopping for basic setup)
        early_stopping = None
        if "early_stopping_patience" in self.run_conf["training"]:
            if self.run_conf["training"]["early_stopping_patience"] is not None:
                early_stopping = EarlyStopping(
                    patience=self.run_conf["training"]["early_stopping_patience"],
                    strategy="maximize",
                )

        ### Data handling
        train_transforms, val_transforms = self.get_transforms(
            self.run_conf["transformations"],
            input_shape=self.run_conf["data"].get("input_shape", 256),
        )

        train_dataset, val_dataset = self.get_datasets(
            train_transforms=train_transforms,
            val_transforms=val_transforms,
        )

        # load sampler
        training_sampler = self.get_sampler(
            train_dataset=train_dataset,
            strategy=self.run_conf["training"].get("sampling_strategy", "random"),
            gamma=self.run_conf["training"].get("sampling_gamma", 1),
        )

        # define dataloaders
        train_dataloader = DataLoader(
            train_dataset,
            batch_size=self.run_conf["training"]["batch_size"],
            sampler=training_sampler,
            num_workers=16,
            pin_memory=False,
            worker_init_fn=self.seed_worker,
        )

        val_dataloader = DataLoader(
            val_dataset,
            batch_size=64,
            num_workers=8,
            pin_memory=True,
            worker_init_fn=self.seed_worker,
        )

        # start Training
        self.logger.info("Instantiate Trainer")
        trainer_fn = self.get_trainer()
        trainer = trainer_fn(
            model=model,
            loss_fn_dict=loss_fn_dict,
            optimizer=optimizer,
            scheduler=scheduler,
            device=device,
            logger=self.logger,
            logdir=self.run_conf["logging"]["log_dir"],
            num_classes=self.run_conf["data"]["num_nuclei_classes"],
            dataset_config=self.dataset_config,
            early_stopping=early_stopping,
            experiment_config=self.run_conf,
            log_images=self.run_conf["logging"].get("log_images", False),
            magnification=self.run_conf["data"].get("magnification", 40),
            mixed_precision=self.run_conf["training"].get("mixed_precision", False),
        )

        # Load checkpoint if provided
        if self.checkpoint is not None:
            self.logger.info("Checkpoint was provided. Restore ...")
            trainer.resume_checkpoint(self.checkpoint)

        # Call fit method
        self.logger.info("Calling Trainer Fit")
        trainer.fit(
            epochs=self.run_conf["training"]["epochs"],
            train_dataloader=train_dataloader,
            val_dataloader=val_dataloader,
            metric_init=self.get_wandb_init_dict(),
            unfreeze_epoch=self.run_conf["training"]["unfreeze_epoch"],
            eval_every=self.run_conf["training"].get("eval_every", 1),
        )

        # Select best model if not provided by early stopping
        checkpoint_dir = Path(self.run_conf["logging"]["log_dir"]) / "checkpoints"
        if not (checkpoint_dir / "model_best.pth").is_file():
            shutil.copy(
                checkpoint_dir / "latest_checkpoint.pth",
                checkpoint_dir / "model_best.pth",
            )

        # At the end close logger
        self.logger.info(f"Finished run {run.id}")
        close_logger(self.logger)

        return self.run_conf["logging"]["log_dir"]

    def load_dataset_setup(self, dataset_path: Union[Path, str]) -> None:
        """Load the configuration of the cell segmentation dataset.

        The dataset must have a dataset_config.yaml file in their dataset path with the following entries:
            * tissue_types: describing the present tissue types with corresponding integer
            * nuclei_types: describing the present nuclei types with corresponding integer

        Args:
            dataset_path (Union[Path, str]): Path to dataset folder
        """
        dataset_config_path = Path(dataset_path) / "dataset_config.yaml"
        with open(dataset_config_path, "r") as dataset_config_file:
            yaml_config = yaml.safe_load(dataset_config_file)
            self.dataset_config = dict(yaml_config)

    def get_loss_fn(self, loss_fn_settings: dict) -> dict:
        """Create a dictionary with loss functions for all branches

        Branches: "nuclei_binary_map", "hv_map", "nuclei_type_map", "tissue_types"

        Args:
            loss_fn_settings (dict): Dictionary with the loss function settings. Structure
            branch_name(str):
                loss_name(str):
                    loss_fn(str): String matching to the loss functions defined in the LOSS_DICT (base_ml.base_loss)
                    weight(float): Weighting factor as float value
                    (optional) args:  Optional parameters for initializing the loss function
                            arg_name: value

            If a branch is not provided, the defaults settings (described below) are used.

            For further information, please have a look at the file configs/examples/cell_segmentation/train_cellvit.yaml
            under the section "loss"

            Example:
                  nuclei_binary_map:
                    bce:
                        loss_fn: xentropy_loss
                        weight: 1
                    dice:
                        loss_fn: dice_loss
                        weight: 1

        Returns:
            dict: Dictionary with loss functions for each branch. Structure:
                branch_name(str):
                    loss_name(str):
                        "loss_fn": Callable loss function
                        "weight": weight of the loss since in the end all losses of all branches are added together for backward pass
                    loss_name(str):
                        "loss_fn": Callable loss function
                        "weight": weight of the loss since in the end all losses of all branches are added together for backward pass
                branch_name(str)
                ...

        Default loss dictionary:
            nuclei_binary_map:
                bce:
                    loss_fn: xentropy_loss
                    weight: 1
                dice:
                    loss_fn: dice_loss
                    weight: 1
            hv_map:
                mse:
                    loss_fn: mse_loss_maps
                    weight: 1
                msge:
                    loss_fn: msge_loss_maps
                    weight: 1
            nuclei_type_map
                bce:
                    loss_fn: xentropy_loss
                    weight: 1
                dice:
                    loss_fn: dice_loss
                    weight: 1
            tissue_types
                ce:
                    loss_fn: nn.CrossEntropyLoss()
                    weight: 1
        """
        loss_fn_dict = {}
        if "nuclei_binary_map" in loss_fn_settings.keys():
            loss_fn_dict["nuclei_binary_map"] = {}
            for loss_name, loss_sett in loss_fn_settings["nuclei_binary_map"].items():
                parameters = loss_sett.get("args", {})
                loss_fn_dict["nuclei_binary_map"][loss_name] = {
                    "loss_fn": retrieve_loss_fn(loss_sett["loss_fn"], **parameters),
                    "weight": loss_sett["weight"],
                }
        else:
            loss_fn_dict["nuclei_binary_map"] = {
                "bce": {"loss_fn": retrieve_loss_fn("xentropy_loss"), "weight": 1},
                "dice": {"loss_fn": retrieve_loss_fn("dice_loss"), "weight": 1},
            }
        if "hv_map" in loss_fn_settings.keys():
            loss_fn_dict["hv_map"] = {}
            for loss_name, loss_sett in loss_fn_settings["hv_map"].items():
                parameters = loss_sett.get("args", {})
                loss_fn_dict["hv_map"][loss_name] = {
                    "loss_fn": retrieve_loss_fn(loss_sett["loss_fn"], **parameters),
                    "weight": loss_sett["weight"],
                }
        else:
            loss_fn_dict["hv_map"] = {
                "mse": {"loss_fn": retrieve_loss_fn("mse_loss_maps"), "weight": 1},
                "msge": {"loss_fn": retrieve_loss_fn("msge_loss_maps"), "weight": 1},
            }
        if "nuclei_type_map" in loss_fn_settings.keys():
            loss_fn_dict["nuclei_type_map"] = {}
            for loss_name, loss_sett in loss_fn_settings["nuclei_type_map"].items():
                parameters = loss_sett.get("args", {})
                loss_fn_dict["nuclei_type_map"][loss_name] = {
                    "loss_fn": retrieve_loss_fn(loss_sett["loss_fn"], **parameters),
                    "weight": loss_sett["weight"],
                }
        else:
            loss_fn_dict["nuclei_type_map"] = {
                "bce": {"loss_fn": retrieve_loss_fn("xentropy_loss"), "weight": 1},
                "dice": {"loss_fn": retrieve_loss_fn("dice_loss"), "weight": 1},
            }
        if "tissue_types" in loss_fn_settings.keys():
            loss_fn_dict["tissue_types"] = {}
            for loss_name, loss_sett in loss_fn_settings["tissue_types"].items():
                parameters = loss_sett.get("args", {})
                loss_fn_dict["tissue_types"][loss_name] = {
                    "loss_fn": retrieve_loss_fn(loss_sett["loss_fn"], **parameters),
                    "weight": loss_sett["weight"],
                }
        else:
            loss_fn_dict["tissue_types"] = {
                "ce": {"loss_fn": nn.CrossEntropyLoss(), "weight": 1},
            }
        if "regression_loss" in loss_fn_settings.keys():
            loss_fn_dict["regression_map"] = {}
            for loss_name, loss_sett in loss_fn_settings["regression_loss"].items():
                parameters = loss_sett.get("args", {})
                loss_fn_dict["regression_map"][loss_name] = {
                    "loss_fn": retrieve_loss_fn(loss_sett["loss_fn"], **parameters),
                    "weight": loss_sett["weight"],
                }
        elif "regression_loss" in self.run_conf["model"].keys():
            loss_fn_dict["regression_map"] = {
                "mse": {"loss_fn": retrieve_loss_fn("mse_loss_maps"), "weight": 1},
            }
        return loss_fn_dict



    def get_scheduler(self, scheduler_type: str, optimizer: Optimizer) -> _LRScheduler:
        """Get the learning rate scheduler for CellViT

        The configuration of the scheduler is given in the "training" -> "scheduler" section.
        Currenlty, "constant", "exponential" and "cosine" schedulers are implemented.

        Required parameters for implemented schedulers:
            - "constant": None
            - "exponential": gamma (optional, defaults to 0.95)
            - "cosine": eta_min (optional, defaults to 1-e5)

        Args:
            scheduler_type (str): Type of scheduler as a string. Currently implemented:
                - "constant" (lowering by a factor of ten after 25 epochs, increasing after 50, decreasimg again after 75)
                - "exponential" (ExponentialLR with given gamma, gamma defaults to 0.95)
                - "cosine" (CosineAnnealingLR, eta_min as parameter, defaults to 1-e5)
            optimizer (Optimizer): Optimizer

        Returns:
            _LRScheduler: PyTorch Scheduler
        """
        implemented_schedulers = ["constant", "exponential", "cosine", "default"]
        if scheduler_type.lower() not in implemented_schedulers:
            self.logger.warning(
                f"Unknown Scheduler - No scheduler from the list {implemented_schedulers} select. Using default scheduling."
            )
        if scheduler_type.lower() == "constant":
            scheduler = SequentialLR(
                optimizer=optimizer,
                schedulers=[
                    ConstantLR(optimizer, factor=1, total_iters=25),
                    ConstantLR(optimizer, factor=0.1, total_iters=25),
                    ConstantLR(optimizer, factor=1, total_iters=25),
                    ConstantLR(optimizer, factor=0.1, total_iters=1000),
                ],
                milestones=[24, 49, 74],
            )
        elif scheduler_type.lower() == "exponential":
            scheduler = ExponentialLR(
                optimizer,
                gamma=self.run_conf["training"]["scheduler"].get("gamma", 0.95),
            )
        elif scheduler_type.lower() == "cosine":
            scheduler = CosineAnnealingLR(
                optimizer,
                T_max=self.run_conf["training"]["epochs"],
                eta_min=self.run_conf["training"]["scheduler"].get("eta_min", 1e-5),
            )
        # elif scheduler_type.lower == "cosinewarmrestarts":
        #     scheduler = CosineAnnealingWarmRestarts(
        #         optimizer,
        #         T_0=self.run_conf["training"]["scheduler"]["T_0"],
        #         T_mult=self.run_conf["training"]["scheduler"]["T_mult"],
        #         eta_min=self.run_conf["training"]["scheduler"].get("eta_min", 1e-5)
        #     )
        elif scheduler_type.lower() == "default":
            scheduler = super().get_scheduler(optimizer)
        return scheduler

    def get_datasets(
        self,
        train_transforms: Callable = None,
        val_transforms: Callable = None,
    ) -> Tuple[Dataset, Dataset]:
        """Retrieve training dataset and validation dataset

        Args:
            train_transforms (Callable, optional): PyTorch transformations for train set. Defaults to None.
            val_transforms (Callable, optional): PyTorch transformations for validation set. Defaults to None.

        Returns:
            Tuple[Dataset, Dataset]: Training dataset and validation dataset
        """
        if (
            "val_split" in self.run_conf["data"]
            and "val_folds" in self.run_conf["data"]
        ):
            raise RuntimeError(
                "Provide either val_splits or val_folds in configuration file, not both."
            )
        if (
            "val_split" not in self.run_conf["data"]
            and "val_folds" not in self.run_conf["data"]
        ):
            raise RuntimeError(
                "Provide either val_split or val_folds in configuration file, one is necessary."
            )
        if (
            "val_split" not in self.run_conf["data"]
            and "val_folds" not in self.run_conf["data"]
        ):
            raise RuntimeError(
                "Provide either val_split or val_fold in configuration file, one is necessary."
            )
        if "regression_loss" in self.run_conf["model"].keys():
            self.run_conf["data"]["regression_loss"] = True

        full_dataset = select_dataset(
            dataset_name="pannuke",
            split="train",
            dataset_config=self.run_conf["data"],
            transforms=train_transforms,
        )
        if "val_split" in self.run_conf["data"]:
            generator_split = torch.Generator().manual_seed(
                self.default_conf["random_seed"]
            )
            val_splits = float(self.run_conf["data"]["val_split"])
            train_dataset, val_dataset = torch.utils.data.random_split(
                full_dataset,
                lengths=[1 - val_splits, val_splits],
                generator=generator_split,
            )
            val_dataset.dataset = copy.deepcopy(full_dataset)
            val_dataset.dataset.set_transforms(val_transforms)
        else:
            train_dataset = full_dataset
            val_dataset = select_dataset(
                dataset_name="pannuke",
                split="validation",
                dataset_config=self.run_conf["data"],
                transforms=val_transforms,
            )

        return train_dataset, val_dataset

    def get_train_model(
        self,
        pretrained_encoder: Union[Path, str] = None,
        pretrained_model: Union[Path, str] = None,
        backbone_type: str = "default",
        shared_decoders: bool = False,
        regression_loss: bool = False,
        **kwargs,
    ) -> CellViT:
        """Return the CellViT training model

        Args:
            pretrained_encoder (Union[Path, str]): Path to a pretrained encoder. Defaults to None.
            pretrained_model (Union[Path, str], optional): Path to a pretrained model. Defaults to None.
            backbone_type (str, optional): Backbone Type. Currently supported are default (None, ViT256, SAM-B, SAM-L, SAM-H). Defaults to None
            shared_decoders (bool, optional): If shared skip decoders should be used. Defaults to False.
            regression_loss (bool, optional): If regression loss is used. Defaults to False

        Returns:
            CellViT: CellViT training model with given setup
        """
        # reseed needed, due to subprocess seeding compatibility
        self.seed_run(self.default_conf["random_seed"])

        # check for backbones
        implemented_backbones = ["default", "UniRepLKNet", "vit256", "sam-b", "sam-l", "sam-h"]
        if backbone_type.lower() not in implemented_backbones:
            raise NotImplementedError(
                f"Unknown Backbone Type - Currently supported are: {implemented_backbones}"
            )
        if backbone_type.lower() == "default":
            model_class = CellViT
            model = model_class(
                model256_path = pretrained_encoder,
                num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
                num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
                #embed_dim=self.run_conf["model"]["embed_dim"],
                in_channels=self.run_conf["model"].get("input_chanels", 3),
                #depth=self.run_conf["model"]["depth"],
                #change
                #depth=(3, 3, 27, 3),
                #num_heads=self.run_conf["model"]["num_heads"],
                # extract_layers=self.run_conf["model"]["extract_layers"],
                
                dropout=self.run_conf["training"].get("drop_rate", 0),
                #attn_drop_rate=self.run_conf["training"].get("attn_drop_rate", 0),
                drop_path_rate=self.run_conf["training"].get("drop_path_rate", 0.1),
                #regression_loss=regression_loss,
            )
            model.load_pretrained_encoder(model.model256_path)
            #model.load_state_dict(checkpoint["model"])

            if pretrained_model is not None:
                self.logger.info(
                    f"Loading pretrained CellViT model from path: {pretrained_model}"
                )
                cellvit_pretrained = torch.load(pretrained_model)
                self.logger.info(model.load_state_dict(cellvit_pretrained, strict=True))
                self.logger.info("Loaded CellViT model")

        self.logger.info(f"\nModel: {model}")
        print(f"\nModel: {model}")
        model = model.to("cuda")
        self.logger.info(
            f"\n{summary(model, input_size=(1, 3, 256, 256), device='cuda')}"
        )
        # from thop import profile
        # input_size=torch.randn(1, 3, 256, 256)
        # self.logger.info(
        #     f"\n{profile(model, inputs=(input_size,))}"
        # )
        #self.logger.info(f"\n{stat(model, (3, 256, 256))}")
        total_params = 0
        Trainable_params = 0
        NonTrainable_params = 0
        for param in model.parameters():
            multvalue = np.prod(param.size())
            total_params += multvalue
            if param.requires_grad:
                Trainable_params += multvalue  # 可训练参数量
            else:
                NonTrainable_params += multvalue  # 非可训练参数量

        print(f'Total params: {total_params}')
        print(f'Trainable params: {Trainable_params}')
        print(f'Non-trainable params: {NonTrainable_params}')

        return model

    def get_wandb_init_dict(self) -> dict:
        pass

    def get_transforms(
        self, transform_settings: dict, input_shape: int = 256
    ) -> Tuple[Callable, Callable]:
        """Get Transformations (Albumentation Transformations). Return both training and validation transformations.

        The transformation settings are given in the following format:
            key: dict with parameters
        Example:
            colorjitter:
                p: 0.1
                scale_setting: 0.5
                scale_color: 0.1

        For further information on how to setup the dictionary and default (recommended) values is given here:
        configs/examples/cell_segmentation/train_cellvit.yaml

        Training Transformations:
            Implemented are:
                - A.RandomRotate90: Key in transform_settings: randomrotate90, parameters: p
                - A.HorizontalFlip: Key in transform_settings: horizontalflip, parameters: p
                - A.VerticalFlip: Key in transform_settings: verticalflip, parameters: p
                - A.Downscale: Key in transform_settings: downscale, parameters: p, scale
                - A.Blur: Key in transform_settings: blur, parameters: p, blur_limit
                - A.GaussNoise: Key in transform_settings: gaussnoise, parameters: p, var_limit
                - A.ColorJitter: Key in transform_settings: colorjitter, parameters: p, scale_setting, scale_color
                - A.Superpixels: Key in transform_settings: superpixels, parameters: p
                - A.ZoomBlur: Key in transform_settings: zoomblur, parameters: p
                - A.RandomSizedCrop: Key in transform_settings: randomsizedcrop, parameters: p
                - A.ElasticTransform: Key in transform_settings: elastictransform, parameters: p
            Always implemented at the end of the pipeline:
                - A.Normalize with given mean (default: (0.5, 0.5, 0.5)) and std (default: (0.5, 0.5, 0.5))

        Validation Transformations:
            A.Normalize with given mean (default: (0.5, 0.5, 0.5)) and std (default: (0.5, 0.5, 0.5))

        Args:
            transform_settings (dict): dictionay with the transformation settings.
            input_shape (int, optional): Input shape of the images to used. Defaults to 256.

        Returns:
            Tuple[Callable, Callable]: Train Transformations, Validation Transformations

        """
        transform_list = []
        transform_settings = {k.lower(): v for k, v in transform_settings.items()}
        if "RandomRotate90".lower() in transform_settings:
            p = transform_settings["randomrotate90"]["p"]
            if p > 0 and p <= 1:
                transform_list.append(A.RandomRotate90(p=p))
        if "HorizontalFlip".lower() in transform_settings.keys():
            p = transform_settings["horizontalflip"]["p"]
            if p > 0 and p <= 1:
                transform_list.append(A.HorizontalFlip(p=p))
        if "VerticalFlip".lower() in transform_settings:
            p = transform_settings["verticalflip"]["p"]
            if p > 0 and p <= 1:
                transform_list.append(A.VerticalFlip(p=p))
        if "Downscale".lower() in transform_settings:
            p = transform_settings["downscale"]["p"]
            scale = transform_settings["downscale"]["scale"]
            if p > 0 and p <= 1:
                transform_list.append(
                    A.Downscale(p=p, scale_max=scale, scale_min=scale)
                )
        if "Blur".lower() in transform_settings:
            p = transform_settings["blur"]["p"]
            blur_limit = transform_settings["blur"]["blur_limit"]
            if p > 0 and p <= 1:
                transform_list.append(A.Blur(p=p, blur_limit=blur_limit))
        if "GaussNoise".lower() in transform_settings:
            p = transform_settings["gaussnoise"]["p"]
            var_limit = transform_settings["gaussnoise"]["var_limit"]
            if p > 0 and p <= 1:
                transform_list.append(A.GaussNoise(p=p, var_limit=var_limit))
        if "ColorJitter".lower() in transform_settings:
            p = transform_settings["colorjitter"]["p"]
            scale_setting = transform_settings["colorjitter"]["scale_setting"]
            scale_color = transform_settings["colorjitter"]["scale_color"]
            if p > 0 and p <= 1:
                transform_list.append(
                    A.ColorJitter(
                        p=p,
                        brightness=scale_setting,
                        contrast=scale_setting,
                        saturation=scale_color,
                        hue=scale_color / 2,
                    )
                )
        if "Superpixels".lower() in transform_settings:
            p = transform_settings["superpixels"]["p"]
            if p > 0 and p <= 1:
                transform_list.append(
                    A.Superpixels(
                        p=p,
                        p_replace=0.1,
                        n_segments=200,
                        max_size=int(input_shape / 2),
                    )
                )
        if "ZoomBlur".lower() in transform_settings:
            p = transform_settings["zoomblur"]["p"]
            if p > 0 and p <= 1:
                transform_list.append(A.ZoomBlur(p=p, max_factor=1.05))
        if "RandomSizedCrop".lower() in transform_settings:
            p = transform_settings["randomsizedcrop"]["p"]
            if p > 0 and p <= 1:
                transform_list.append(
                    A.RandomSizedCrop(
                        min_max_height=(input_shape / 2, input_shape),
                        height=input_shape,
                        width=input_shape,
                        p=p,
                    )
                )
        if "ElasticTransform".lower() in transform_settings:
            p = transform_settings["elastictransform"]["p"]
            if p > 0 and p <= 1:
                transform_list.append(
                    A.ElasticTransform(p=p, sigma=25, alpha=0.5, alpha_affine=15)
                )

        if "normalize" in transform_settings:
            mean = transform_settings["normalize"].get("mean", (0.5, 0.5, 0.5))
            std = transform_settings["normalize"].get("std", (0.5, 0.5, 0.5))
        else:
            mean = (0.5, 0.5, 0.5)
            std = (0.5, 0.5, 0.5)
        transform_list.append(A.Normalize(mean=mean, std=std))

        train_transforms = A.Compose(transform_list)
        val_transforms = A.Compose([A.Normalize(mean=mean, std=std)])

        return train_transforms, val_transforms

    def get_sampler(
        self, train_dataset: CellDataset, strategy: str = "random", gamma: float = 1
    ) -> Sampler:
        """Return the sampler (either RandomSampler or WeightedRandomSampler)

        Args:
            train_dataset (CellDataset): Dataset for training
            strategy (str, optional): Sampling strategy. Defaults to "random" (random sampling).
                Implemented are "random", "cell", "tissue", "cell+tissue".
            gamma (float, optional): Gamma scaling factor, between 0 and 1.
                1 means total balancing, 0 means original weights. Defaults to 1.

        Raises:
            NotImplementedError: Not implemented sampler is selected

        Returns:
            Sampler: Sampler for training
        """
        if strategy.lower() == "random":
            sampling_generator = torch.Generator().manual_seed(
                self.default_conf["random_seed"]
            )
            sampler = RandomSampler(train_dataset, generator=sampling_generator)
            self.logger.info("Using RandomSampler")
        else:
            # this solution is not accurate when a subset is used since the weights are calculated on the whole training dataset
            if isinstance(train_dataset, Subset):
                ds = train_dataset.dataset
            else:
                ds = train_dataset
            ds.load_cell_count()
            if strategy.lower() == "cell":
                weights = ds.get_sampling_weights_cell(gamma)
            elif strategy.lower() == "tissue":
                weights = ds.get_sampling_weights_tissue(gamma)
            elif strategy.lower() == "cell+tissue":
                weights = ds.get_sampling_weights_cell_tissue(gamma)
            else:
                raise NotImplementedError(
                    "Unknown sampling strategy - Implemented are cell, tissue and cell+tissue"
                )

            if isinstance(train_dataset, Subset):
                weights = torch.Tensor([weights[i] for i in train_dataset.indices])

            sampling_generator = torch.Generator().manual_seed(
                self.default_conf["random_seed"]
            )
            sampler = WeightedRandomSampler(
                weights=weights,
                num_samples=len(train_dataset),
                replacement=True,
                generator=sampling_generator,
            )

            self.logger.info(f"Using Weighted Sampling with strategy: {strategy}")
            self.logger.info(f"Unique-Weights: {torch.unique(weights)}")

        return sampler

    def get_trainer(self) -> BaseTrainer:
        """Return Trainer matching to this network

        Returns:
            BaseTrainer: Trainer
        """
        return CellViTTrainer