Spaces:
Sleeping
Sleeping
File size: 43,875 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 |
# -*- coding: utf-8 -*-
# Loss functions (PyTorch and own defined)
#
# Own defined loss functions:
# xentropy_loss, dice_loss, mse_loss and msge_loss (https://github.com/vqdang/hover_net)
# WeightedBaseLoss, MAEWeighted, MSEWeighted, BCEWeighted, CEWeighted (https://github.com/okunator/cellseg_models.pytorch)
# @ Fabian Hörst, fabian.hoerst@uk-essen.de
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import torch
import torch.nn.functional as F
from typing import List, Tuple
from torch import nn
from torch.nn.modules.loss import _Loss
from base_ml.base_utils import filter2D, gaussian_kernel2d
class XentropyLoss(_Loss):
"""Cross entropy loss"""
def __init__(self, reduction: str = "mean") -> None:
super().__init__(size_average=None, reduce=None, reduction=reduction)
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Assumes NCHW shape of array, must be torch.float32 dtype
Args:
input (torch.Tensor): Ground truth array with shape (N, C, H, W) with N being the batch-size, H the height, W the width and C the number of classes
target (torch.Tensor): Prediction array with shape (N, C, H, W) with N being the batch-size, H the height, W the width and C the number of classes
Returns:
torch.Tensor: Cross entropy loss, with shape () [scalar], grad_fn = MeanBackward0
"""
# reshape
input = input.permute(0, 2, 3, 1)
target = target.permute(0, 2, 3, 1)
epsilon = 10e-8
# scale preds so that the class probs of each sample sum to 1
pred = input / torch.sum(input, -1, keepdim=True)
# manual computation of crossentropy
pred = torch.clamp(pred, epsilon, 1.0 - epsilon)
loss = -torch.sum((target * torch.log(pred)), -1, keepdim=True)
loss = loss.mean() if self.reduction == "mean" else loss.sum()
return loss
class DiceLoss(_Loss):
"""Dice loss
Args:
smooth (float, optional): Smoothing value. Defaults to 1e-3.
"""
def __init__(self, smooth: float = 1e-3) -> None:
super().__init__(size_average=None, reduce=None, reduction="mean")
self.smooth = smooth
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Assumes NCHW shape of array, must be torch.float32 dtype
`pred` and `true` must be of torch.float32. Assuming of shape NxHxWxC.
Args:
input (torch.Tensor): Prediction array with shape (N, C, H, W) with N being the batch-size, H the height, W the width and C the number of classes
target (torch.Tensor): Ground truth array with shape (N, C, H, W) with N being the batch-size, H the height, W the width and C the number of classes
Returns:
torch.Tensor: Dice loss, with shape () [scalar], grad_fn=SumBackward0
"""
input = input.permute(0, 2, 3, 1)
target = target.permute(0, 2, 3, 1)
inse = torch.sum(input * target, (0, 1, 2))
l = torch.sum(input, (0, 1, 2))
r = torch.sum(target, (0, 1, 2))
loss = 1.0 - (2.0 * inse + self.smooth) / (l + r + self.smooth)
loss = torch.sum(loss)
return loss
class MSELossMaps(_Loss):
"""Calculate mean squared error loss for combined horizontal and vertical maps of segmentation tasks."""
def __init__(self) -> None:
super().__init__(size_average=None, reduce=None, reduction="mean")
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Loss calculation
Args:
input (torch.Tensor): Prediction of combined horizontal and vertical maps
with shape (N, 2, H, W), channel 0 is vertical and channel 1 is horizontal
target (torch.Tensor): Ground truth of combined horizontal and vertical maps
with shape (N, 2, H, W), channel 0 is vertical and channel 1 is horizontal
Returns:
torch.Tensor: Mean squared error per pixel with shape (N, 2, H, W), grad_fn=SubBackward0
"""
# reshape
loss = input - target
loss = (loss * loss).mean()
return loss
class MSGELossMaps(_Loss):
def __init__(self) -> None:
super().__init__(size_average=None, reduce=None, reduction="mean")
def get_sobel_kernel(
self, size: int, device: str
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Get sobel kernel with a given size.
Args:
size (int): Kernel site
device (str): Cuda device
Returns:
Tuple[torch.Tensor, torch.Tensor]: Horizontal and vertical sobel kernel, each with shape (size, size)
"""
assert size % 2 == 1, "Must be odd, get size=%d" % size
h_range = torch.arange(
-size // 2 + 1,
size // 2 + 1,
dtype=torch.float32,
device=device,
requires_grad=False,
)
v_range = torch.arange(
-size // 2 + 1,
size // 2 + 1,
dtype=torch.float32,
device=device,
requires_grad=False,
)
h, v = torch.meshgrid(h_range, v_range, indexing="ij")
kernel_h = h / (h * h + v * v + 1.0e-15)
kernel_v = v / (h * h + v * v + 1.0e-15)
return kernel_h, kernel_v
def get_gradient_hv(self, hv: torch.Tensor, device: str) -> torch.Tensor:
"""For calculating gradient of horizontal and vertical prediction map
Args:
hv (torch.Tensor): horizontal and vertical map
device (str): CUDA device
Returns:
torch.Tensor: Gradient with same shape as input
"""
kernel_h, kernel_v = self.get_sobel_kernel(5, device=device)
kernel_h = kernel_h.view(1, 1, 5, 5) # constant
kernel_v = kernel_v.view(1, 1, 5, 5) # constant
h_ch = hv[..., 0].unsqueeze(1) # Nx1xHxW
v_ch = hv[..., 1].unsqueeze(1) # Nx1xHxW
# can only apply in NCHW mode
h_dh_ch = F.conv2d(h_ch, kernel_h, padding=2)
v_dv_ch = F.conv2d(v_ch, kernel_v, padding=2)
dhv = torch.cat([h_dh_ch, v_dv_ch], dim=1)
dhv = dhv.permute(0, 2, 3, 1).contiguous() # to NHWC
return dhv
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
focus: torch.Tensor,
device: str,
) -> torch.Tensor:
"""MSGE (Gradient of MSE) loss
Args:
input (torch.Tensor): Input with shape (B, C, H, W)
target (torch.Tensor): Target with shape (B, C, H, W)
focus (torch.Tensor): Focus, type of masking (B, C, W, W)
device (str): CUDA device to work with.
Returns:
torch.Tensor: MSGE loss
"""
input = input.permute(0, 2, 3, 1)
target = target.permute(0, 2, 3, 1)
focus = focus.permute(0, 2, 3, 1)
focus = focus[..., 1]
focus = (focus[..., None]).float() # assume input NHW
focus = torch.cat([focus, focus], axis=-1).to(device)
true_grad = self.get_gradient_hv(target, device)
pred_grad = self.get_gradient_hv(input, device)
loss = pred_grad - true_grad
loss = focus * (loss * loss)
# artificial reduce_mean with focused region
loss = loss.sum() / (focus.sum() + 1.0e-8)
return loss
class FocalTverskyLoss(nn.Module):
"""FocalTverskyLoss
PyTorch implementation of the Focal Tversky Loss Function for multiple classes
doi: 10.1109/ISBI.2019.8759329
Abraham, N., & Khan, N. M. (2019).
A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation.
In International Symposium on Biomedical Imaging. https://doi.org/10.1109/isbi.2019.8759329
@ Fabian Hörst, fabian.hoerst@uk-essen.de
Institute for Artifical Intelligence in Medicine,
University Medicine Essen
Args:
alpha_t (float, optional): Alpha parameter for tversky loss (multiplied with false-negatives). Defaults to 0.7.
beta_t (float, optional): Beta parameter for tversky loss (multiplied with false-positives). Defaults to 0.3.
gamma_f (float, optional): Gamma Focal parameter. Defaults to 4/3.
smooth (float, optional): Smooting factor. Defaults to 0.000001.
"""
def __init__(
self,
alpha_t: float = 0.7,
beta_t: float = 0.3,
gamma_f: float = 4 / 3,
smooth: float = 1e-6,
) -> None:
super().__init__()
self.alpha_t = alpha_t
self.beta_t = beta_t
self.gamma_f = gamma_f
self.smooth = smooth
self.num_classes = 2
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Loss calculation
Args:
input (torch.Tensor): Predictions, logits (without Softmax). Shape: (B, C, H, W)
target (torch.Tensor): Targets, either flattened (Shape: (C, H, W) or as one-hot encoded (Shape: (batch-size, C, H, W)).
Raises:
ValueError: Error if there is a shape missmatch
Returns:
torch.Tensor: FocalTverskyLoss (weighted)
"""
input = input.permute(0, 2, 3, 1)
if input.shape[-1] != self.num_classes:
raise ValueError(
"Predictions must be a logit tensor with the last dimension shape beeing equal to the number of classes"
)
if len(target.shape) != len(input.shape):
# convert the targets to onehot
target = F.one_hot(target, num_classes=self.num_classes)
# flatten
target = target.permute(0, 2, 3, 1)
target = target.view(-1)
input = torch.softmax(input, dim=-1).view(-1)
# calculate true positives, false positives and false negatives
tp = (input * target).sum()
fp = ((1 - target) * input).sum()
fn = (target * (1 - input)).sum()
Tversky = (tp + self.smooth) / (
tp + self.alpha_t * fn + self.beta_t * fp + self.smooth
)
FocalTversky = (1 - Tversky) ** self.gamma_f
return FocalTversky
class MCFocalTverskyLoss(FocalTverskyLoss):
"""Multiclass FocalTverskyLoss
PyTorch implementation of the Focal Tversky Loss Function for multiple classes
doi: 10.1109/ISBI.2019.8759329
Abraham, N., & Khan, N. M. (2019).
A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation.
In International Symposium on Biomedical Imaging. https://doi.org/10.1109/isbi.2019.8759329
@ Fabian Hörst, fabian.hoerst@uk-essen.de
Institute for Artifical Intelligence in Medicine,
University Medicine Essen
Args:
alpha_t (float, optional): Alpha parameter for tversky loss (multiplied with false-negatives). Defaults to 0.7.
beta_t (float, optional): Beta parameter for tversky loss (multiplied with false-positives). Defaults to 0.3.
gamma_f (float, optional): Gamma Focal parameter. Defaults to 4/3.
smooth (float, optional): Smooting factor. Defaults to 0.000001.
num_classes (int, optional): Number of output classes. For binary segmentation, prefer FocalTverskyLoss (speed optimized). Defaults to 2.
class_weights (List[int], optional): Weights for each class. If not provided, equal weight. Length must be equal to num_classes. Defaults to None.
"""
def __init__(
self,
alpha_t: float = 0.7,
beta_t: float = 0.3,
gamma_f: float = 4 / 3,
smooth: float = 0.000001,
num_classes: int = 2,
class_weights: List[int] = None,
) -> None:
super().__init__(alpha_t, beta_t, gamma_f, smooth)
self.num_classes = num_classes
if class_weights is None:
self.class_weights = [1 for i in range(self.num_classes)]
else:
assert (
len(class_weights) == self.num_classes
), "Please provide matching weights"
self.class_weights = class_weights
self.class_weights = torch.Tensor(self.class_weights)
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
"""Loss calculation
Args:
input (torch.Tensor): Predictions, logits (without Softmax). Shape: (B, num_classes, H, W)
target (torch.Tensor): Targets, either flattened (Shape: (B, H, W) or as one-hot encoded (Shape: (B, num_classes, H, W)).
Raises:
ValueError: Error if there is a shape missmatch
Returns:
torch.Tensor: FocalTverskyLoss (weighted)
"""
input = input.permute(0, 2, 3, 1)
if input.shape[-1] != self.num_classes:
raise ValueError(
"Predictions must be a logit tensor with the last dimension shape beeing equal to the number of classes"
)
if len(target.shape) != len(input.shape):
# convert the targets to onehot
target = F.one_hot(target, num_classes=self.num_classes)
target = target.permute(0, 2, 3, 1)
# Softmax
input = torch.softmax(input, dim=-1)
# Reshape
input = torch.permute(input, (3, 1, 2, 0))
target = torch.permute(target, (3, 1, 2, 0))
input = torch.flatten(input, start_dim=1)
target = torch.flatten(target, start_dim=1)
tp = torch.sum(input * target, 1)
fp = torch.sum((1 - target) * input, 1)
fn = torch.sum(target * (1 - input), 1)
Tversky = (tp + self.smooth) / (
tp + self.alpha_t * fn + self.beta_t * fp + self.smooth
)
FocalTversky = (1 - Tversky) ** self.gamma_f
self.class_weights = self.class_weights.to(FocalTversky.device)
return torch.sum(self.class_weights * FocalTversky)
class WeightedBaseLoss(nn.Module):
"""Init a base class for weighted cross entropy based losses.
Enables weighting for object instance edges and classes.
Adapted/Copied from: https://github.com/okunator/cellseg_models.pytorch (10.5281/zenodo.7064617)
Args:
apply_sd (bool, optional): If True, Spectral decoupling regularization will be applied to the
loss matrix. Defaults to False.
apply_ls (bool, optional): If True, Label smoothing will be applied to the target.. Defaults to False.
apply_svls (bool, optional): If True, spatially varying label smoothing will be applied to the target. Defaults to False.
apply_mask (bool, optional): If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W). Defaults to False.
class_weights (torch.Tensor, optional): Class weights. A tensor of shape (C, ). Defaults to None.
edge_weight (float, optional): Weight for the object instance border pixels. Defaults to None.
"""
def __init__(
self,
apply_sd: bool = False,
apply_ls: bool = False,
apply_svls: bool = False,
apply_mask: bool = False,
class_weights: torch.Tensor = None,
edge_weight: float = None,
**kwargs,
) -> None:
super().__init__()
self.apply_sd = apply_sd
self.apply_ls = apply_ls
self.apply_svls = apply_svls
self.apply_mask = apply_mask
self.class_weights = class_weights
self.edge_weight = edge_weight
def apply_spectral_decouple(
self, loss_matrix: torch.Tensor, yhat: torch.Tensor, lam: float = 0.01
) -> torch.Tensor:
"""Apply spectral decoupling L2 norm after the loss.
https://arxiv.org/abs/2011.09468
Args:
loss_matrix (torch.Tensor): Pixelwise losses. A tensor of shape (B, H, W).
yhat (torch.Tensor): The pixel predictions of the model. Shape (B, C, H, W).
lam (float, optional): Lambda constant.. Defaults to 0.01.
Returns:
torch.Tensor: SD-regularized loss matrix. Same shape as input.
"""
return loss_matrix + (lam / 2) * (yhat**2).mean(axis=1)
def apply_ls_to_target(
self,
target: torch.Tensor,
num_classes: int,
label_smoothing: float = 0.1,
) -> torch.Tensor:
"""_summary_
Args:
target (torch.Tensor): Number of classes in the data.
num_classes (int): The target one hot tensor. Shape (B, C, H, W)
label_smoothing (float, optional): The smoothing coeff alpha. Defaults to 0.1.
Returns:
torch.Tensor: Label smoothed target. Same shape as input.
"""
return target * (1 - label_smoothing) + label_smoothing / num_classes
def apply_svls_to_target(
self,
target: torch.Tensor,
num_classes: int,
kernel_size: int = 5,
sigma: int = 3,
**kwargs,
) -> torch.Tensor:
"""Apply spatially varying label smoothihng to target map.
https://arxiv.org/abs/2104.05788
Args:
target (torch.Tensor): The target one hot tensor. Shape (B, C, H, W).
num_classes (int): Number of classes in the data.
kernel_size (int, optional): Size of a square kernel.. Defaults to 5.
sigma (int, optional): The std of the gaussian. Defaults to 3.
Returns:
torch.Tensor: Label smoothed target. Same shape as input.
"""
my, mx = kernel_size // 2, kernel_size // 2
gaussian_kernel = gaussian_kernel2d(
kernel_size, sigma, num_classes, device=target.device
)
neighborsum = (1 - gaussian_kernel[..., my, mx]) + 1e-16
gaussian_kernel = gaussian_kernel.clone()
gaussian_kernel[..., my, mx] = neighborsum
svls_kernel = gaussian_kernel / neighborsum[0]
return filter2D(target.float(), svls_kernel) / svls_kernel[0].sum()
def apply_class_weights(
self, loss_matrix: torch.Tensor, target: torch.Tensor
) -> torch.Tensor:
"""Multiply pixelwise loss matrix by the class weights.
NOTE: No normalization
Args:
loss_matrix (torch.Tensor): Pixelwise losses. A tensor of shape (B, H, W).
target (torch.Tensor): The target mask. Shape (B, H, W).
Returns:
torch.Tensor: The loss matrix scaled with the weight matrix. Shape (B, H, W).
"""
weight_mat = self.class_weights[target.long()].to(target.device) # to (B, H, W)
loss = loss_matrix * weight_mat
return loss
def apply_edge_weights(
self, loss_matrix: torch.Tensor, weight_map: torch.Tensor
) -> torch.Tensor:
"""Apply weights to the object boundaries.
Basically just computes `edge_weight`**`weight_map`.
Args:
loss_matrix (torch.Tensor): Pixelwise losses. A tensor of shape (B, H, W).
weight_map (torch.Tensor): Map that points to the pixels that will be weighted. Shape (B, H, W).
Returns:
torch.Tensor: The loss matrix scaled with the nuclear boundary weights. Shape (B, H, W).
"""
return loss_matrix * self.edge_weight**weight_map
def apply_mask_weight(
self, loss_matrix: torch.Tensor, mask: torch.Tensor, norm: bool = True
) -> torch.Tensor:
"""Apply a mask to the loss matrix.
Args:
loss_matrix (torch.Tensor): Pixelwise losses. A tensor of shape (B, H, W).
mask (torch.Tensor): The mask. Shape (B, H, W).
norm (bool, optional): If True, the loss matrix will be normalized by the mean of the mask. Defaults to True.
Returns:
torch.Tensor: The loss matrix scaled with the mask. Shape (B, H, W).
"""
loss_matrix *= mask
if norm:
norm_mask = torch.mean(mask.float()) + 1e-7
loss_matrix /= norm_mask
return loss_matrix
def extra_repr(self) -> str:
"""Add info to print."""
s = "apply_sd={apply_sd}, apply_ls={apply_ls}, apply_svls={apply_svls}, apply_mask={apply_mask}, class_weights={class_weights}, edge_weight={edge_weight}" # noqa
return s.format(**self.__dict__)
class MAEWeighted(WeightedBaseLoss):
"""Compute the MAE loss. Used in the stardist method.
Stardist:
https://arxiv.org/pdf/1806.03535.pdf
Adapted/Copied from: https://github.com/okunator/cellseg_models.pytorch (10.5281/zenodo.7064617)
NOTE: We have added the option to apply spectral decoupling and edge weights
to the loss matrix.
Args:
alpha (float, optional): Weight regulizer b/w [0,1]. In stardist repo, this is the
'train_background_reg' parameter. Defaults to 1e-4.
apply_sd (bool, optional): If True, Spectral decoupling regularization will be applied to the
loss matrix. Defaults to False.
apply_mask (bool, optional): f True, a mask will be applied to the loss matrix. Mask shape: (B, H, W). Defaults to False.
edge_weight (float, optional): Weight that is added to object borders. Defaults to None.
"""
def __init__(
self,
alpha: float = 1e-4,
apply_sd: bool = False,
apply_mask: bool = False,
edge_weight: float = None,
**kwargs,
) -> None:
super().__init__(apply_sd, False, False, apply_mask, False, edge_weight)
self.alpha = alpha
self.eps = 1e-7
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
target_weight: torch.Tensor = None,
mask: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""Compute the masked MAE loss.
Args:
input (torch.Tensor): The prediction map. Shape (B, C, H, W).
target (torch.Tensor): The ground truth annotations. Shape (B, H, W).
target_weight (torch.Tensor, optional): The edge weight map. Shape (B, H, W). Defaults to None.
mask (torch.Tensor, optional): The mask map. Shape (B, H, W). Defaults to None.
Raises:
ValueError: Pred and target shapes must match.
Returns:
torch.Tensor: Computed MAE loss (scalar).
"""
yhat = input
n_classes = yhat.shape[1]
if target.size() != yhat.size():
target = target.unsqueeze(1).repeat_interleave(n_classes, dim=1)
if not yhat.shape == target.shape:
raise ValueError(
f"Pred and target shapes must match. Got: {yhat.shape}, {target.shape}"
)
# compute the MAE loss with alpha as weight
mae_loss = torch.mean(torch.abs(target - yhat), axis=1) # (B, H, W)
if self.apply_mask and mask is not None:
mae_loss = self.apply_mask_weight(mae_loss, mask, norm=True) # (B, H, W)
# add the background regularization
if self.alpha > 0:
reg = torch.mean(((1 - mask).unsqueeze(1)) * torch.abs(yhat), axis=1)
mae_loss += self.alpha * reg
if self.apply_sd:
mae_loss = self.apply_spectral_decouple(mae_loss, yhat)
if self.edge_weight is not None:
mae_loss = self.apply_edge_weights(mae_loss, target_weight)
return mae_loss.mean()
class MSEWeighted(WeightedBaseLoss):
"""MSE-loss.
Args:
apply_sd (bool, optional): If True, Spectral decoupling regularization will be applied to the
loss matrix. Defaults to False.
apply_ls (bool, optional): If True, Label smoothing will be applied to the target. Defaults to False.
apply_svls (bool, optional): If True, spatially varying label smoothing will be applied to the target. Defaults to False.
apply_mask (bool, optional): If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W). Defaults to False.
edge_weight (float, optional): Weight that is added to object borders. Defaults to None.
class_weights (torch.Tensor, optional): Class weights. A tensor of shape (n_classes,). Defaults to None.
"""
def __init__(
self,
apply_sd: bool = False,
apply_ls: bool = False,
apply_svls: bool = False,
apply_mask: bool = False,
edge_weight: float = None,
class_weights: torch.Tensor = None,
**kwargs,
) -> None:
super().__init__(
apply_sd, apply_ls, apply_svls, apply_mask, class_weights, edge_weight
)
@staticmethod
def tensor_one_hot(type_map: torch.Tensor, n_classes: int) -> torch.Tensor:
"""Convert a segmentation mask into one-hot-format.
I.e. Takes in a segmentation mask of shape (B, H, W) and reshapes it
into a tensor of shape (B, C, H, W).
Args:
type_map (torch.Tensor): Multi-label Segmentation mask. Shape (B, H, W).
n_classes (int): Number of classes. (Zero-class included.)
Raises:
TypeError: Input `type_map` should have dtype: torch.int64.
Returns:
torch.Tensor: A one hot tensor. Shape: (B, C, H, W). Dtype: torch.FloatTensor.
"""
if not type_map.dtype == torch.int64:
raise TypeError(
f"""
Input `type_map` should have dtype: torch.int64. Got: {type_map.dtype}."""
)
one_hot = torch.zeros(
type_map.shape[0],
n_classes,
*type_map.shape[1:],
device=type_map.device,
dtype=type_map.dtype,
)
return one_hot.scatter_(dim=1, index=type_map.unsqueeze(1), value=1.0) + 1e-7
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
target_weight: torch.Tensor = None,
mask: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""Compute the MSE-loss.
Args:
input (torch.Tensor): The prediction map. Shape (B, C, H, W, C).
target (torch.Tensor): The ground truth annotations. Shape (B, H, W).
target_weight (torch.Tensor, optional): The edge weight map. Shape (B, H, W). Defaults to None.
mask (torch.Tensor, optional): The mask map. Shape (B, H, W). Defaults to None.
Returns:
torch.Tensor: Computed MSE loss (scalar).
"""
yhat = input
target_one_hot = target
num_classes = yhat.shape[1]
if target.size() != yhat.size():
if target.dtype == torch.float32:
target_one_hot = target.unsqueeze(1)
else:
target_one_hot = MSEWeighted.tensor_one_hot(target, num_classes)
if self.apply_svls:
target_one_hot = self.apply_svls_to_target(
target_one_hot, num_classes, **kwargs
)
if self.apply_ls:
target_one_hot = self.apply_ls_to_target(
target_one_hot, num_classes, **kwargs
)
mse = F.mse_loss(yhat, target_one_hot, reduction="none") # (B, C, H, W)
mse = torch.mean(mse, dim=1) # to (B, H, W)
if self.apply_mask and mask is not None:
mse = self.apply_mask_weight(mse, mask, norm=False) # (B, H, W)
if self.apply_sd:
mse = self.apply_spectral_decouple(mse, yhat)
if self.class_weights is not None:
mse = self.apply_class_weights(mse, target)
if self.edge_weight is not None:
mse = self.apply_edge_weights(mse, target_weight)
return torch.mean(mse)
class BCEWeighted(WeightedBaseLoss):
def __init__(
self,
apply_sd: bool = False,
apply_ls: bool = False,
apply_svls: bool = False,
apply_mask: bool = False,
edge_weight: float = None,
class_weights: torch.Tensor = None,
**kwargs,
) -> None:
"""Binary cross entropy loss with weighting and other tricks.
Parameters
----------
apply_sd : bool, default=False
If True, Spectral decoupling regularization will be applied to the
loss matrix.
apply_ls : bool, default=False
If True, Label smoothing will be applied to the target.
apply_svls : bool, default=False
If True, spatially varying label smoothing will be applied to the target
apply_mask : bool, default=False
If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W)
edge_weight : float, default=None
Weight that is added to object borders.
class_weights : torch.Tensor, default=None
Class weights. A tensor of shape (n_classes,).
"""
super().__init__(
apply_sd, apply_ls, apply_svls, apply_mask, class_weights, edge_weight
)
self.eps = 1e-8
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
target_weight: torch.Tensor = None,
mask: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""Compute binary cross entropy loss.
Parameters
----------
yhat : torch.Tensor
The prediction map. Shape (B, C, H, W).
target : torch.Tensor
the ground truth annotations. Shape (B, H, W).
target_weight : torch.Tensor, default=None
The edge weight map. Shape (B, H, W).
mask : torch.Tensor, default=None
The mask map. Shape (B, H, W).
Returns
-------
torch.Tensor:
Computed BCE loss (scalar).
"""
# Logits input
yhat = input
num_classes = yhat.shape[1]
yhat = torch.clip(yhat, self.eps, 1.0 - self.eps)
if target.size() != yhat.size():
target = target.unsqueeze(1).repeat_interleave(num_classes, dim=1)
if self.apply_svls:
target = self.apply_svls_to_target(target, num_classes, **kwargs)
if self.apply_ls:
target = self.apply_ls_to_target(target, num_classes, **kwargs)
bce = F.binary_cross_entropy_with_logits(
yhat.float(), target.float(), reduction="none"
) # (B, C, H, W)
bce = torch.mean(bce, dim=1) # (B, H, W)
if self.apply_mask and mask is not None:
bce = self.apply_mask_weight(bce, mask, norm=False) # (B, H, W)
if self.apply_sd:
bce = self.apply_spectral_decouple(bce, yhat)
if self.class_weights is not None:
bce = self.apply_class_weights(bce, target)
if self.edge_weight is not None:
bce = self.apply_edge_weights(bce, target_weight)
return torch.mean(bce)
# class BCEWeighted(WeightedBaseLoss):
# """Binary cross entropy loss with weighting and other tricks.
# Adapted/Copied from: https://github.com/okunator/cellseg_models.pytorch (10.5281/zenodo.7064617)
# Args:
# apply_sd (bool, optional): If True, Spectral decoupling regularization will be applied to the
# loss matrix. Defaults to False.
# apply_ls (bool, optional): If True, Label smoothing will be applied to the target. Defaults to False.
# apply_svls (bool, optional): If True, spatially varying label smoothing will be applied to the target. Defaults to False.
# apply_mask (bool, optional): If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W). Defaults to False.
# edge_weight (float, optional): Weight that is added to object borders. Defaults to None.
# class_weights (torch.Tensor, optional): Class weights. A tensor of shape (n_classes,). Defaults to None.
# """
# def __init__(
# self,
# apply_sd: bool = False,
# apply_ls: bool = False,
# apply_svls: bool = False,
# apply_mask: bool = False,
# edge_weight: float = None,
# class_weights: torch.Tensor = None,
# **kwargs,
# ) -> None:
# super().__init__(
# apply_sd, apply_ls, apply_svls, apply_mask, class_weights, edge_weight
# )
# self.eps = 1e-8
# def forward(
# self,
# input: torch.Tensor,
# target: torch.Tensor,
# target_weight: torch.Tensor = None,
# mask: torch.Tensor = None,
# **kwargs,
# ) -> torch.Tensor:
# """Compute binary cross entropy loss.
# Args:
# input (torch.Tensor): The prediction map. We internally convert back via logit function. Shape (B, C, H, W).
# target (torch.Tensor): the ground truth annotations. Shape (B, H, W).
# target_weight (torch.Tensor, optional): The edge weight map. Shape (B, H, W). Defaults to None.
# mask (torch.Tensor, optional): The mask map. Shape (B, H, W). Defaults to None.
# Returns:
# torch.Tensor: Computed BCE loss (scalar).
# """
# yhat = input
# yhat = torch.special.logit(yhat)
# num_classes = yhat.shape[1]
# yhat = torch.clip(yhat, self.eps, 1.0 - self.eps)
# if target.size() != yhat.size():
# target = target.unsqueeze(1).repeat_interleave(num_classes, dim=1)
# if self.apply_svls:
# target = self.apply_svls_to_target(target, num_classes, **kwargs)
# if self.apply_ls:
# target = self.apply_ls_to_target(target, num_classes, **kwargs)
# bce = F.binary_cross_entropy_with_logits(
# yhat.float(), target.float(), reduction="none"
# ) # (B, C, H, W)
# bce = torch.mean(bce, dim=1) # (B, H, W)
# if self.apply_mask and mask is not None:
# bce = self.apply_mask_weight(bce, mask, norm=False) # (B, H, W)
# if self.apply_sd:
# bce = self.apply_spectral_decouple(bce, yhat)
# if self.class_weights is not None:
# bce = self.apply_class_weights(bce, target)
# if self.edge_weight is not None:
# bce = self.apply_edge_weights(bce, target_weight)
# return torch.mean(bce)
class CEWeighted(WeightedBaseLoss):
def __init__(
self,
apply_sd: bool = False,
apply_ls: bool = False,
apply_svls: bool = False,
apply_mask: bool = False,
edge_weight: float = None,
class_weights: torch.Tensor = None,
**kwargs,
) -> None:
"""Cross-Entropy loss with weighting.
Parameters
----------
apply_sd : bool, default=False
If True, Spectral decoupling regularization will be applied to the
loss matrix.
apply_ls : bool, default=False
If True, Label smoothing will be applied to the target.
apply_svls : bool, default=False
If True, spatially varying label smoothing will be applied to the target
apply_mask : bool, default=False
If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W)
edge_weight : float, default=None
Weight that is added to object borders.
class_weights : torch.Tensor, default=None
Class weights. A tensor of shape (n_classes,).
"""
super().__init__(
apply_sd, apply_ls, apply_svls, apply_mask, class_weights, edge_weight
)
self.eps = 1e-8
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
target_weight: torch.Tensor = None,
mask: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""Compute the cross entropy loss.
Parameters
----------
yhat : torch.Tensor
The prediction map. Shape (B, C, H, W).
target : torch.Tensor
the ground truth annotations. Shape (B, H, W).
target_weight : torch.Tensor, default=None
The edge weight map. Shape (B, H, W).
mask : torch.Tensor, default=None
The mask map. Shape (B, H, W).
Returns
-------
torch.Tensor:
Computed CE loss (scalar).
"""
yhat = input # TODO: remove doubled Softmax -> this function needs logits instead of softmax output
input_soft = F.softmax(yhat, dim=1) + self.eps # (B, C, H, W)
num_classes = yhat.shape[1]
if len(target.shape) != len(yhat.shape) and target.shape[1] != num_classes:
target_one_hot = MSEWeighted.tensor_one_hot(
target, num_classes
) # (B, C, H, W)
else:
target_one_hot = target
target = torch.argmax(target, dim=1)
assert target_one_hot.shape == yhat.shape
if self.apply_svls:
target_one_hot = self.apply_svls_to_target(
target_one_hot, num_classes, **kwargs
)
if self.apply_ls:
target_one_hot = self.apply_ls_to_target(
target_one_hot, num_classes, **kwargs
)
loss = -torch.sum(target_one_hot * torch.log(input_soft), dim=1) # (B, H, W)
if self.apply_mask and mask is not None:
loss = self.apply_mask_weight(loss, mask, norm=False) # (B, H, W)
if self.apply_sd:
loss = self.apply_spectral_decouple(loss, yhat)
if self.class_weights is not None:
loss = self.apply_class_weights(loss, target)
if self.edge_weight is not None:
loss = self.apply_edge_weights(loss, target_weight)
return loss.mean()
# class CEWeighted(WeightedBaseLoss):
# """Cross-Entropy loss with weighting.
# Adapted/Copied from: https://github.com/okunator/cellseg_models.pytorch (10.5281/zenodo.7064617)
# Args:
# apply_sd (bool, optional): If True, Spectral decoupling regularization will be applied to the loss matrix. Defaults to False.
# apply_ls (bool, optional): If True, Label smoothing will be applied to the target. Defaults to False.
# apply_svls (bool, optional): If True, spatially varying label smoothing will be applied to the target. Defaults to False.
# apply_mask (bool, optional): If True, a mask will be applied to the loss matrix. Mask shape: (B, H, W). Defaults to False.
# edge_weight (float, optional): Weight that is added to object borders. Defaults to None.
# class_weights (torch.Tensor, optional): Class weights. A tensor of shape (n_classes,). Defaults to None.
# logits (bool, optional): If work on logit values. Defaults to False. Defaults to False.
# """
# def __init__(
# self,
# apply_sd: bool = False,
# apply_ls: bool = False,
# apply_svls: bool = False,
# apply_mask: bool = False,
# edge_weight: float = None,
# class_weights: torch.Tensor = None,
# logits: bool = False,
# **kwargs,
# ) -> None:
# super().__init__(
# apply_sd, apply_ls, apply_svls, apply_mask, class_weights, edge_weight
# )
# self.eps = 1e-8
# self.logits = logits
# def forward(
# self,
# input: torch.Tensor,
# target: torch.Tensor,
# target_weight: torch.Tensor = None,
# mask: torch.Tensor = None,
# **kwargs,
# ) -> torch.Tensor:
# """Compute the cross entropy loss.
# Args:
# input (torch.Tensor): The prediction map. Shape (B, C, H, W).
# target (torch.Tensor): The ground truth annotations. Shape (B, H, W).
# target_weight (torch.Tensor, optional): The edge weight map. Shape (B, H, W). Defaults to None.
# mask (torch.Tensor, optional): The mask map. Shape (B, H, W). Defaults to None.
# Returns:
# torch.Tensor: Computed CE loss (scalar).
# """
# yhat = input
# if self.logits:
# input_soft = (
# F.softmax(yhat, dim=1) + self.eps
# ) # (B, C, H, W) # check if doubled softmax
# else:
# input_soft = input
# num_classes = yhat.shape[1]
# if len(target.shape) != len(yhat.shape) and target.shape[1] != num_classes:
# target_one_hot = MSEWeighted.tensor_one_hot(
# target, num_classes
# ) # (B, C, H, W)
# else:
# target_one_hot = target
# target = torch.argmax(target, dim=1)
# assert target_one_hot.shape == yhat.shape
# if self.apply_svls:
# target_one_hot = self.apply_svls_to_target(
# target_one_hot, num_classes, **kwargs
# )
# if self.apply_ls:
# target_one_hot = self.apply_ls_to_target(
# target_one_hot, num_classes, **kwargs
# )
# loss = -torch.sum(target_one_hot * torch.log(input_soft), dim=1) # (B, H, W)
# if self.apply_mask and mask is not None:
# loss = self.apply_mask_weight(loss, mask, norm=False) # (B, H, W)
# if self.apply_sd:
# loss = self.apply_spectral_decouple(loss, yhat)
# if self.class_weights is not None:
# loss = self.apply_class_weights(loss, target)
# if self.edge_weight is not None:
# loss = self.apply_edge_weights(loss, target_weight)
# return loss.mean()
### Stardist loss functions
class L1LossWeighted(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
target_weight: torch.Tensor = None,
) -> torch.Tensor:
l1loss = F.l1_loss(input, target, size_average=True, reduce=False)
l1loss = torch.mean(l1loss, dim=1)
if target_weight is not None:
l1loss = torch.mean(target_weight * l1loss)
else:
l1loss = torch.mean(l1loss)
return l1loss
def retrieve_loss_fn(loss_name: dict, **kwargs) -> _Loss:
"""Return the loss function with given name defined in the LOSS_DICT and initialize with kwargs
kwargs must match with the parameters defined in the initialization method of the selected loss object
Args:
loss_name (dict): Name of the loss function
Returns:
_Loss: Loss
"""
loss_fn = LOSS_DICT[loss_name]
loss_fn = loss_fn(**kwargs)
return loss_fn
LOSS_DICT = {
"xentropy_loss": XentropyLoss,
"dice_loss": DiceLoss,
"mse_loss_maps": MSELossMaps,
"msge_loss_maps": MSGELossMaps,
"FocalTverskyLoss": FocalTverskyLoss,
"MCFocalTverskyLoss": MCFocalTverskyLoss,
"CrossEntropyLoss": nn.CrossEntropyLoss, # input logits, targets
"L1Loss": nn.L1Loss,
"MSELoss": nn.MSELoss,
"CTCLoss": nn.CTCLoss, # probability
"NLLLoss": nn.NLLLoss, # log-probabilities of each class
"PoissonNLLLoss": nn.PoissonNLLLoss,
"GaussianNLLLoss": nn.GaussianNLLLoss,
"KLDivLoss": nn.KLDivLoss, # argument input in log-space
"BCELoss": nn.BCELoss, # probabilities
"BCEWithLogitsLoss": nn.BCEWithLogitsLoss, # logits
"MarginRankingLoss": nn.MarginRankingLoss,
"HingeEmbeddingLoss": nn.HingeEmbeddingLoss,
"MultiLabelMarginLoss": nn.MultiLabelMarginLoss,
"HuberLoss": nn.HuberLoss,
"SmoothL1Loss": nn.SmoothL1Loss,
"SoftMarginLoss": nn.SoftMarginLoss, # logits
"MultiLabelSoftMarginLoss": nn.MultiLabelSoftMarginLoss,
"CosineEmbeddingLoss": nn.CosineEmbeddingLoss,
"MultiMarginLoss": nn.MultiMarginLoss,
"TripletMarginLoss": nn.TripletMarginLoss,
"TripletMarginWithDistanceLoss": nn.TripletMarginWithDistanceLoss,
"MAEWeighted": MAEWeighted,
"MSEWeighted": MSEWeighted,
"BCEWeighted": BCEWeighted, # logits
"CEWeighted": CEWeighted, # logits
"L1LossWeighted": L1LossWeighted,
}
|