Spaces:
Sleeping
Sleeping
File size: 1,810 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# Cell Segmentation
## Training
The data structure used to train cell segmentation networks is different than to train classification networks on WSI/Patient level. Cureently, due to the massive amount of cells inside a WSI, all famous cell segmentation datasets (such like [PanNuke](https://warwick.ac.uk/fac/cross_fac/tia/data/pannuke), https://doi.org/10.48550/arXiv.2003.10778) provide just patches with cell annotations. Therefore, we use the following dataset structure (with k folds):
```bash
dataset
βββ dataset_config.yaml
βββ fold0
β βββ images
| | βββ 0_imgname0.png
| | βββ 0_imgname1.png
| | βββ 0_imgname2.png
...
| | βββ 0_imgnameN.png
β βββ labels
| | βββ 0_imgname0.npy
| | βββ 0_imgname1.npy
| | βββ 0_imgname2.npy
...
| | βββ 0_imgnameN.npy
| βββ types.csv
βββ fold1
β βββ images
| | βββ 1_imgname0.png
| | βββ 1_imgname1.png
...
β βββ labels
| | βββ 1_imgname0.npy
| | βββ 1_imgname1.npy
...
| βββ types.csv
...
βββ foldk
β βββ images
| βββ k_imgname0.png
| βββ k_imgname1.png
...
βββ labels
| βββ k_imgname0.npy
| βββ k_imgname1.npy
βββ types.csv
```
Each type csv should have the following header:
```csv
img,type # Header
foldnum_imgname0.png,SetTypeHeare # Each row is one patch with tissue type
```
The labels are numpy masks with the following structure:
TBD
## Add a new dataset
add to dataset coordnator.
All settings of the dataset must be performed in the correspondinng yaml file, under the data section
dataset name is **not** case sensitive!
|