File size: 11,809 Bytes
8235a54
b7a7d0d
 
8235a54
 
 
63d1099
b7a7d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8235a54
0c78756
 
466409b
 
 
b7a7d0d
5141c76
8eff662
 
5141c76
f24fa75
5141c76
 
 
9183423
5141c76
 
9183423
5141c76
 
b7a7d0d
822990f
 
b7a7d0d
0c78756
 
 
 
 
 
 
 
 
 
 
 
 
 
8235a54
 
0c78756
 
d405dab
0c78756
 
 
 
 
5141c76
 
781971a
8eff662
 
5141c76
7c06f9b
5141c76
8235a54
ecc41de
 
525d51f
5141c76
da0039b
5141c76
 
 
 
ecc41de
5141c76
 
 
 
da0039b
ecc41de
cf066c9
5141c76
 
037ed8d
5141c76
85eea67
86edf9f
5141c76
 
 
 
4672a33
5141c76
ecc41de
 
5141c76
12d0b1d
ecc41de
 
ab9a71f
5141c76
 
 
 
 
 
 
 
 
 
 
b7a7d0d
5141c76
b7a7d0d
6b22787
0db9664
6b22787
 
 
 
 
 
 
7303847
6b22787
 
 
 
 
 
 
 
 
525d51f
 
 
 
8eff662
525d51f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8235a54
b7a7d0d
8235a54
d405dab
39dfea5
8235a54
984196c
 
 
 
 
 
 
 
 
 
598f026
 
84a1446
8eff662
598f026
 
 
9a2b171
4488c87
2e74883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae6fd3
 
 
 
 
9a2b171
 
61e5ab7
b81e7ca
9f92734
61e5ab7
b81e7ca
9f92734
61e5ab7
b81e7ca
9f92734
61e5ab7
b81e7ca
9f92734
61e5ab7
b81e7ca
9f92734
61e5ab7
b81e7ca
9f92734
61e5ab7
b81e7ca
7c06f9b
61e5ab7
b81e7ca
61e5ab7
 
 
 
 
5935859
a811614
95c165a
a811614
 
 
 
 
 
5433006
 
95c165a
 
 
 
 
 
 
 
6f2a3a1
 
95c165a
5141c76
525d51f
5141c76
6f2a3a1
 
5141c76
7c06f9b
 
2e9807a
 
 
 
 
 
 
 
7c06f9b
95c165a
 
 
 
c4ab263
8e09f14
0a0342b
06d8a62
5d0db4d
 
 
 
 
 
 
b7a7d0d
8235a54
 
 
dbb6342
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
# from src.submission.submit import add_new_eval
from PIL import Image
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
import copy

def load_data(data_path):
    columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR', 'Post-ASR','Pre-FID', 'Post-FID']
    columns_sorted = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR', 'Post-ASR','Pre-FID', 'Post-FID']
    
    df = pd.read_csv(data_path).dropna()
    df['Post-ASR'] = df['Post-ASR'].round(0)

    # rank according to the Score column
    df = df.sort_values(by='Post-ASR', ascending=False)
    # reorder the columns
    df = df[columns_sorted]
    

    return df

def restart_space():
    API.restart_space(repo_id=REPO_ID)

# try:
#     print(EVAL_REQUESTS_PATH)
#     snapshot_download(
#         repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()
# try:
#     print(EVAL_RESULTS_PATH)
#     snapshot_download(
#         repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()


# raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# leaderboard_df = original_df.copy()

# (
#     finished_eval_queue_df,
#     running_eval_queue_df,
#     pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
csv_path='./assets/object_parachute.csv'
df_results = load_data(csv_path)
methods = list(set(df_results['Unlearned_Methods']))
all_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR', 'Post-ASR','Pre-FID']
show_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR', 'Post-ASR','Post-FID']
TYPES = ['str', 'markdown', 'str', 'number', 'number', 'number']
files = ['church','garbage','parachute','tench', 'vangogh', 'nudity', 'violence','illegal_activity']
df_results_init = df_results.copy()[show_columns]

def update_table(
    hidden_df: pd.DataFrame,
    model1_column: list,
    #type_query: list,
    #open_query: list,
    # precision_query: str,
    # size_query: list,
    # show_deleted: bool,
    query: str,
):
    # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
    # filtered_df = filter_queries(query, filtered_df)
    # df = select_columns(filtered_df, columns)
    filtered_df = hidden_df.copy()
    # print(open_query)
    
    # filtered_df = filtered_df[filtered_df['Unlearned_Methods'].isin(open_query)]
    # map_open = {'open': 'Yes', 'closed': 'No'}
    # filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])]
    filtered_df=select_columns(filtered_df,model1_column)
    filtered_df = filter_queries(query, filtered_df)
    # map_open = {'SD V1.4', 'SD V1.5', 'SD V2.0'}
    # filtered_df = filtered_df[filtered_df["Diffusion_Models"].isin([o for o in open_query])]
    # filtered_df = filtered_df[[map_columns[k] for k in columns]]
    # deduplication
    # df = df.drop_duplicates(subset=["Model"])
    df = filtered_df.drop_duplicates()
    # df = df[show_columns]
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df['Unlearned_Methods'].str.contains(query, case=False))]


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)

    return filtered_df

def search_table_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df['Diffusion_Models'].str.contains(query, case=False))]


def filter_queries_model(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    # if query != "":
        # queries = [q.strip() for q in query.split(";")]
    for _q in query:
        print(_q)
        if _q != "":
            temp_filtered_df = search_table_model(filtered_df, _q)
            if len(temp_filtered_df) > 0:
                final_df.append(temp_filtered_df)
    if len(final_df) > 0:
        filtered_df = pd.concat(final_df)

    return filtered_df

def select_columns(df: pd.DataFrame, columns_1: list) -> pd.DataFrame:
    always_here_cols = ['Unlearned_Methods','Source', 'Diffusion_Models']
    
    # We use COLS to maintain sorting
    all_columns =['Pre-ASR','Post-ASR','PreFID','Post-FID']

    if (len(columns_1)) == 0:
        filtered_df = df[
            always_here_cols +
            [c for c in all_columns if c in df.columns]
        ]

    else:
        filtered_df = df[
            always_here_cols +
            [c for c in all_columns if c in df.columns and (c in columns_1) ]
        ]

    return filtered_df


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    gr.Markdown(EVALUATION_QUEUE_TEXT,elem_classes="eval-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("UnlearnDiffAtk Benchmark", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        model1_column = gr.CheckboxGroup(
                        label="Evaluation Metrics",
                        choices=['Pre-ASR', 'Post-ASR','Pre-FID','Post-FID'],
                        interactive=True,
                        elem_id="column-select",
                    )
                   
                # with gr.Column(min_width=320):
                    # with gr.Row():
                    #     shown_columns_1 = gr.CheckboxGroup(
                    #         choices=["Church","Parachute","Tench", "Garbage Truck"],
                    #         label="Undersirable Objects",
                    #         elem_id="column-object",
                    #         interactive=True,
                    #     )
                    # with gr.Row():
                    #     shown_columns_2 = gr.CheckboxGroup(
                    #         choices=["Van Gogh"],
                    #         label="Undersirable Styles",
                    #         elem_id="column-style",
                    #         interactive=True,
                    #     )
                    # with gr.Row():
                    #     shown_columns_3 = gr.CheckboxGroup(
                    #         choices=["Violence","Illegal Activity","Nudity"],
                    #         label="Undersirable Concepts (Outputs that may be offensive in nature)",
                    #         elem_id="column-select",
                    #         interactive=True,
                    #     )
                    # with gr.Row():
                    #     shown_columns_4 = gr.Slider(
                    #         1, 100, value=40, 
                    #         step=1, label="Attacking Steps", info="Choose between 1 and 100",
                    #         interactive=True,)
            for i in range(len(files)):
                if files[i] == "church":
                    name = "### Unlearned Objects "+" Church" 
                    csv_path = './assets/'+files[i]+'.csv'
                elif files[i] == 'garbage':
                    name = "### Unlearned Objects "+" Garbage"
                    csv_path = './assets/'+files[i]+'.csv'
                elif files[i] == 'tench':
                    name = "### Unlearned Objects "+" Tench"
                    csv_path = './assets/'+files[i]+'.csv'
                elif files[i] == 'parachute':
                    name = "### Unlearned Objects "+" Parachute"
                    csv_path = './assets/'+files[i]+'.csv'
                elif files[i] == 'vangogh':
                    name = "### Unlearned Stype "+" Van Gogh"
                    csv_path = './assets/'+files[i]+'.csv'
                elif files[i] == 'nudity':
                    name = "### Unlearned  Concepts "+" Nudity"
                    csv_path = './assets/'+files[i]+'.csv'
                elif files[i] == 'violence':
                    name = "### Unlearned Concepts "+" Violence"
                    csv_path = './assets/'+files[i]+'.csv'
                elif files[i] == 'illegal_activity':
                    name = "### Unlearned Concepts "+" Illgal Activity"
                    csv_path = './assets/'+files[i]+'.csv'
                
                
                
                
                
                gr.Markdown(name)
                df_results = load_data(csv_path)
                df_results_init = df_results.copy()[show_columns]
                leaderboard_table = gr.components.Dataframe(
                value = df_results,
                datatype = TYPES,
                elem_id = "leaderboard-table",
                interactive = False,
                visible=True,
                )

            
                hidden_leaderboard_table_for_search = gr.components.Dataframe(
                    value=df_results_init,
                    interactive=False,
                    visible=False,
                )
        
                search_bar.submit(
                    update_table,
                    [   
                        
                        hidden_leaderboard_table_for_search,
                        model1_column,
                        search_bar,
                    ],
                    leaderboard_table,
                )

                for selector in [model1_column]:
                    selector.change(
                        update_table,
                        [   
                            hidden_leaderboard_table_for_search,
                            model1_column,
                            search_bar,
                        ],
                        leaderboard_table,
                )
            
          
    
            


    with gr.Row():
        with gr.Accordion("📙 Citation", open=True):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=10,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue().launch(share=True)