Spaces:
Sleeping
Sleeping
File size: 11,809 Bytes
8235a54 b7a7d0d 8235a54 63d1099 b7a7d0d 8235a54 0c78756 466409b b7a7d0d 5141c76 8eff662 5141c76 f24fa75 5141c76 9183423 5141c76 9183423 5141c76 b7a7d0d 822990f b7a7d0d 0c78756 8235a54 0c78756 d405dab 0c78756 5141c76 781971a 8eff662 5141c76 7c06f9b 5141c76 8235a54 ecc41de 525d51f 5141c76 da0039b 5141c76 ecc41de 5141c76 da0039b ecc41de cf066c9 5141c76 037ed8d 5141c76 85eea67 86edf9f 5141c76 4672a33 5141c76 ecc41de 5141c76 12d0b1d ecc41de ab9a71f 5141c76 b7a7d0d 5141c76 b7a7d0d 6b22787 0db9664 6b22787 7303847 6b22787 525d51f 8eff662 525d51f 8235a54 b7a7d0d 8235a54 d405dab 39dfea5 8235a54 984196c 598f026 84a1446 8eff662 598f026 9a2b171 4488c87 2e74883 7ae6fd3 9a2b171 61e5ab7 b81e7ca 9f92734 61e5ab7 b81e7ca 9f92734 61e5ab7 b81e7ca 9f92734 61e5ab7 b81e7ca 9f92734 61e5ab7 b81e7ca 9f92734 61e5ab7 b81e7ca 9f92734 61e5ab7 b81e7ca 7c06f9b 61e5ab7 b81e7ca 61e5ab7 5935859 a811614 95c165a a811614 5433006 95c165a 6f2a3a1 95c165a 5141c76 525d51f 5141c76 6f2a3a1 5141c76 7c06f9b 2e9807a 7c06f9b 95c165a c4ab263 8e09f14 0a0342b 06d8a62 5d0db4d b7a7d0d 8235a54 dbb6342 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
# from src.submission.submit import add_new_eval
from PIL import Image
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
import copy
def load_data(data_path):
columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR', 'Post-ASR','Pre-FID', 'Post-FID']
columns_sorted = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR', 'Post-ASR','Pre-FID', 'Post-FID']
df = pd.read_csv(data_path).dropna()
df['Post-ASR'] = df['Post-ASR'].round(0)
# rank according to the Score column
df = df.sort_values(by='Post-ASR', ascending=False)
# reorder the columns
df = df[columns_sorted]
return df
def restart_space():
API.restart_space(repo_id=REPO_ID)
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
# except Exception:
# restart_space()
# raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# leaderboard_df = original_df.copy()
# (
# finished_eval_queue_df,
# running_eval_queue_df,
# pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
csv_path='./assets/object_parachute.csv'
df_results = load_data(csv_path)
methods = list(set(df_results['Unlearned_Methods']))
all_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR', 'Post-ASR','Pre-FID']
show_columns = ['Unlearned_Methods','Source', 'Diffusion_Models','Pre-ASR', 'Post-ASR','Post-FID']
TYPES = ['str', 'markdown', 'str', 'number', 'number', 'number']
files = ['church','garbage','parachute','tench', 'vangogh', 'nudity', 'violence','illegal_activity']
df_results_init = df_results.copy()[show_columns]
def update_table(
hidden_df: pd.DataFrame,
model1_column: list,
#type_query: list,
#open_query: list,
# precision_query: str,
# size_query: list,
# show_deleted: bool,
query: str,
):
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
# filtered_df = filter_queries(query, filtered_df)
# df = select_columns(filtered_df, columns)
filtered_df = hidden_df.copy()
# print(open_query)
# filtered_df = filtered_df[filtered_df['Unlearned_Methods'].isin(open_query)]
# map_open = {'open': 'Yes', 'closed': 'No'}
# filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])]
filtered_df=select_columns(filtered_df,model1_column)
filtered_df = filter_queries(query, filtered_df)
# map_open = {'SD V1.4', 'SD V1.5', 'SD V2.0'}
# filtered_df = filtered_df[filtered_df["Diffusion_Models"].isin([o for o in open_query])]
# filtered_df = filtered_df[[map_columns[k] for k in columns]]
# deduplication
# df = df.drop_duplicates(subset=["Model"])
df = filtered_df.drop_duplicates()
# df = df[show_columns]
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df['Unlearned_Methods'].str.contains(query, case=False))]
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
return filtered_df
def search_table_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df['Diffusion_Models'].str.contains(query, case=False))]
def filter_queries_model(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
# if query != "":
# queries = [q.strip() for q in query.split(";")]
for _q in query:
print(_q)
if _q != "":
temp_filtered_df = search_table_model(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
return filtered_df
def select_columns(df: pd.DataFrame, columns_1: list) -> pd.DataFrame:
always_here_cols = ['Unlearned_Methods','Source', 'Diffusion_Models']
# We use COLS to maintain sorting
all_columns =['Pre-ASR','Post-ASR','PreFID','Post-FID']
if (len(columns_1)) == 0:
filtered_df = df[
always_here_cols +
[c for c in all_columns if c in df.columns]
]
else:
filtered_df = df[
always_here_cols +
[c for c in all_columns if c in df.columns and (c in columns_1) ]
]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
gr.Markdown(EVALUATION_QUEUE_TEXT,elem_classes="eval-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("UnlearnDiffAtk Benchmark", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
model1_column = gr.CheckboxGroup(
label="Evaluation Metrics",
choices=['Pre-ASR', 'Post-ASR','Pre-FID','Post-FID'],
interactive=True,
elem_id="column-select",
)
# with gr.Column(min_width=320):
# with gr.Row():
# shown_columns_1 = gr.CheckboxGroup(
# choices=["Church","Parachute","Tench", "Garbage Truck"],
# label="Undersirable Objects",
# elem_id="column-object",
# interactive=True,
# )
# with gr.Row():
# shown_columns_2 = gr.CheckboxGroup(
# choices=["Van Gogh"],
# label="Undersirable Styles",
# elem_id="column-style",
# interactive=True,
# )
# with gr.Row():
# shown_columns_3 = gr.CheckboxGroup(
# choices=["Violence","Illegal Activity","Nudity"],
# label="Undersirable Concepts (Outputs that may be offensive in nature)",
# elem_id="column-select",
# interactive=True,
# )
# with gr.Row():
# shown_columns_4 = gr.Slider(
# 1, 100, value=40,
# step=1, label="Attacking Steps", info="Choose between 1 and 100",
# interactive=True,)
for i in range(len(files)):
if files[i] == "church":
name = "### Unlearned Objects "+" Church"
csv_path = './assets/'+files[i]+'.csv'
elif files[i] == 'garbage':
name = "### Unlearned Objects "+" Garbage"
csv_path = './assets/'+files[i]+'.csv'
elif files[i] == 'tench':
name = "### Unlearned Objects "+" Tench"
csv_path = './assets/'+files[i]+'.csv'
elif files[i] == 'parachute':
name = "### Unlearned Objects "+" Parachute"
csv_path = './assets/'+files[i]+'.csv'
elif files[i] == 'vangogh':
name = "### Unlearned Stype "+" Van Gogh"
csv_path = './assets/'+files[i]+'.csv'
elif files[i] == 'nudity':
name = "### Unlearned Concepts "+" Nudity"
csv_path = './assets/'+files[i]+'.csv'
elif files[i] == 'violence':
name = "### Unlearned Concepts "+" Violence"
csv_path = './assets/'+files[i]+'.csv'
elif files[i] == 'illegal_activity':
name = "### Unlearned Concepts "+" Illgal Activity"
csv_path = './assets/'+files[i]+'.csv'
gr.Markdown(name)
df_results = load_data(csv_path)
df_results_init = df_results.copy()[show_columns]
leaderboard_table = gr.components.Dataframe(
value = df_results,
datatype = TYPES,
elem_id = "leaderboard-table",
interactive = False,
visible=True,
)
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=df_results_init,
interactive=False,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
model1_column,
search_bar,
],
leaderboard_table,
)
for selector in [model1_column]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
model1_column,
search_bar,
],
leaderboard_table,
)
with gr.Row():
with gr.Accordion("📙 Citation", open=True):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=10,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue().launch(share=True) |