Spaces:
Runtime error
Runtime error
xinfyxinfy
commited on
Commit
•
ca3430a
1
Parent(s):
62a66d7
Upload 16 files
Browse files- .gitattributes +12 -0
- app.py +224 -0
- models/mcpas/bestmodel_alphabetapeptide.hdf5 +3 -0
- models/mcpas/bestmodel_alphabetaptptidemhc.hdf5 +3 -0
- models/mcpas/bestmodel_alphapeptide.hdf5 +3 -0
- models/mcpas/bestmodel_alphapeptidemhc.hdf5 +3 -0
- models/mcpas/bestmodel_betapeptide.hdf5 +3 -0
- models/mcpas/bestmodel_betapeptidemhc.hdf5 +3 -0
- models/vdjdb/bestmodel_alphabetapeptide.hdf5 +3 -0
- models/vdjdb/bestmodel_alphabetapeptidemhc.hdf5 +3 -0
- models/vdjdb/bestmodel_alphapeptide.hdf5 +3 -0
- models/vdjdb/bestmodel_alphapeptidemhc.hdf5 +3 -0
- models/vdjdb/bestmodel_betapeptide.hdf5 +3 -0
- models/vdjdb/bestmodel_betapeptidemhc.hdf5 +3 -0
- requirements.txt +3 -0
- sample_input_data.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,15 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
models/mcpas/bestmodel_alphabetapeptide.hdf5 filter=lfs diff=lfs merge=lfs -text
|
36 |
+
models/mcpas/bestmodel_alphabetaptptidemhc.hdf5 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
models/mcpas/bestmodel_alphapeptide.hdf5 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
models/mcpas/bestmodel_alphapeptidemhc.hdf5 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
models/mcpas/bestmodel_betapeptide.hdf5 filter=lfs diff=lfs merge=lfs -text
|
40 |
+
models/mcpas/bestmodel_betapeptidemhc.hdf5 filter=lfs diff=lfs merge=lfs -text
|
41 |
+
models/vdjdb/bestmodel_alphabetapeptide.hdf5 filter=lfs diff=lfs merge=lfs -text
|
42 |
+
models/vdjdb/bestmodel_alphabetapeptidemhc.hdf5 filter=lfs diff=lfs merge=lfs -text
|
43 |
+
models/vdjdb/bestmodel_alphapeptide.hdf5 filter=lfs diff=lfs merge=lfs -text
|
44 |
+
models/vdjdb/bestmodel_alphapeptidemhc.hdf5 filter=lfs diff=lfs merge=lfs -text
|
45 |
+
models/vdjdb/bestmodel_betapeptide.hdf5 filter=lfs diff=lfs merge=lfs -text
|
46 |
+
models/vdjdb/bestmodel_betapeptidemhc.hdf5 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
os.environ["CUDA_VISIBLE_DEVICES"]="-1" ### load on cpu if GPU is making issue
|
6 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
7 |
+
from tensorflow.keras.models import load_model
|
8 |
+
import time
|
9 |
+
# from PIL import Image
|
10 |
+
|
11 |
+
st.set_page_config(page_title="TCR-ESM",page_icon="dna")
|
12 |
+
|
13 |
+
hide_streamlit_style = """
|
14 |
+
<style>
|
15 |
+
#root > div:nth-child(1) > div > div > div > div > section > div {padding-top: 2rem;}
|
16 |
+
</style>
|
17 |
+
|
18 |
+
"""
|
19 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
20 |
+
|
21 |
+
# image = Image.open('TCR-ESM.png')
|
22 |
+
# st.image(image)
|
23 |
+
|
24 |
+
st.title('TCR-ESM')
|
25 |
+
st.subheader('a webserver accompanying our work on predicting TCR-peptide-MHC binding with large protein model (ESM1v) embeddings')
|
26 |
+
|
27 |
+
dataset = st.radio("Please select the Training Databse",('MCPAS', 'VDJDB'), horizontal=True)
|
28 |
+
|
29 |
+
task = st.radio("Please select the Prediction Task",("TCR\u03B1-TCR\u03B2-Peptide-MHC", "TCR\u03B1-TCR\u03B2-Peptide", "TCR\u03B1-Peptide-MHC",
|
30 |
+
"TCR\u03B2-Peptide-MHC", "TCR\u03B1-Peptide", "TCR\u03B2-Peptide"), horizontal=True)
|
31 |
+
|
32 |
+
with open("sample_input_data.zip", "rb") as file:
|
33 |
+
btn = st.download_button(label="Download Sample Input Data",data=file,file_name="sample_input_data.zip", mime="application/octet-stream")
|
34 |
+
# st.download_button('Download Sample Input Data', open('tcresm_sample_input.zip'))
|
35 |
+
|
36 |
+
############## get numpy files
|
37 |
+
if task == "TCR\u03B1-TCR\u03B2-Peptide-MHC":
|
38 |
+
alpha = st.file_uploader("Choose the .npy file containing TCR\u03B1 Embeddings", key=101)
|
39 |
+
beta = st.file_uploader("Choose the .npy file containing TCR\u03B2 Embeddings", key=103)
|
40 |
+
pepti = st.file_uploader("Choose the .npy file containing Peptide Embeddings", key=109)
|
41 |
+
mhc = st.file_uploader("Choose the .npy file containing MHC Embeddings", key=113)
|
42 |
+
shorttask = 'abpm'
|
43 |
+
group = (alpha,beta,pepti,mhc)
|
44 |
+
elif task == "TCR\u03B1-TCR\u03B2-Peptide":
|
45 |
+
alpha = st.file_uploader("Choose the .npy file containing TCR\u03B1 Embeddings", key=127)
|
46 |
+
beta = st.file_uploader("Choose the .npy file containing TCR\u03B2 Embeddings", key=131)
|
47 |
+
pepti = st.file_uploader("Choose the .npy file containing Peptide Embeddings", key=137)
|
48 |
+
shorttask = 'abp'
|
49 |
+
group = (alpha,beta,pepti)
|
50 |
+
elif task == "TCR\u03B1-Peptide-MHC":
|
51 |
+
alpha = st.file_uploader("Choose the .npy file containing TCR\u03B1 Embeddings", key=139)
|
52 |
+
pepti = st.file_uploader("Choose the .npy file containing Peptide Embeddings", key=149)
|
53 |
+
mhc = st.file_uploader("Choose the .npy file containing MHC Embeddings", key=151)
|
54 |
+
shorttask = 'apm'
|
55 |
+
group = (alpha,pepti,mhc)
|
56 |
+
elif task == "TCR\u03B2-Peptide-MHC":
|
57 |
+
beta = st.file_uploader("Choose the .npy file containing TCR\u03B2 Embeddings", key=157)
|
58 |
+
pepti = st.file_uploader("Choose the .npy file containing Peptide Embeddings", key=163)
|
59 |
+
mhc = st.file_uploader("Choose the .npy file containing MHC Embeddings", key=167)
|
60 |
+
shorttask = 'bpm'
|
61 |
+
group = (beta,pepti,mhc)
|
62 |
+
elif task == "TCR\u03B1-Peptide":
|
63 |
+
alpha = st.file_uploader("Choose the .npy file containing TCR\u03B1 Embeddings", key=173)
|
64 |
+
pepti = st.file_uploader("Choose the .npy file containing Peptide Embeddings", key=179)
|
65 |
+
shorttask = 'ap'
|
66 |
+
group = (alpha,pepti)
|
67 |
+
elif task == "TCR\u03B2-Peptide":
|
68 |
+
beta = st.file_uploader("Choose the .npy file containing TCR\u03B2 Embeddings", key=181)
|
69 |
+
pepti = st.file_uploader("Choose the .npy file containing Peptide Embeddings", key=191)
|
70 |
+
shorttask = 'bp'
|
71 |
+
group = (beta,pepti)
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
##################### ML predict function
|
78 |
+
@st.cache_data
|
79 |
+
def predict_on_batch_output(dataset,shorttask,group):
|
80 |
+
|
81 |
+
if dataset == 'MCPAS':
|
82 |
+
dataset='mcpas'
|
83 |
+
elif dataset== 'VDJDB':
|
84 |
+
dataset ='vdjdb'
|
85 |
+
|
86 |
+
|
87 |
+
if dataset=='mcpas' and shorttask=='abp':
|
88 |
+
#load data
|
89 |
+
alpha, beta, pep = group
|
90 |
+
alpha_np, beta_np, pep_np = np.load(alpha), np.load(beta), np.load(pep)
|
91 |
+
#load model
|
92 |
+
model = load_model('models/mcpas/bestmodel_alphabetapeptide.hdf5',compile=False)
|
93 |
+
#predict_on_batch
|
94 |
+
output = model.predict_on_batch([alpha_np, beta_np, pep_np])
|
95 |
+
elif dataset=='mcpas' and shorttask=='abpm':
|
96 |
+
#load data
|
97 |
+
alpha, beta, pep, mhc = group
|
98 |
+
alpha_np, beta_np, pep_np, mhc_np = np.load(alpha), np.load(beta), np.load(pep), np.load(mhc)
|
99 |
+
#load model
|
100 |
+
model = load_model('models/mcpas/bestmodel_alphabetaptptidemhc.hdf5',compile=False)
|
101 |
+
#predict_on_batch
|
102 |
+
output = model.predict_on_batch([alpha_np, beta_np, pep_np, mhc_np])
|
103 |
+
elif dataset=='mcpas' and shorttask=='ap':
|
104 |
+
#load data
|
105 |
+
alpha, pep, = group
|
106 |
+
alpha_np, pep_np, = np.load(alpha), np.load(pep)
|
107 |
+
#load model
|
108 |
+
model = load_model('models/mcpas/bestmodel_alphapeptide.hdf5',compile=False)
|
109 |
+
#predict_on_batch
|
110 |
+
output = model.predict_on_batch([alpha_np,pep_np])
|
111 |
+
elif dataset=='mcpas' and shorttask=='bp':
|
112 |
+
#load data
|
113 |
+
beta, pep = group
|
114 |
+
beta_np, pep_np = np.load(beta), np.load(pep)
|
115 |
+
#load model
|
116 |
+
model = load_model('models/mcpas/bestmodel_betapeptide.hdf5',compile=False)
|
117 |
+
#predict_on_batch
|
118 |
+
output = model.predict_on_batch([beta_np, pep_np])
|
119 |
+
elif dataset=='mcpas' and shorttask=='apm':
|
120 |
+
#load data
|
121 |
+
alpha, pep, mhc = group
|
122 |
+
alpha_np, pep_np, mhc_np = np.load(alpha), np.load(pep), np.load(mhc)
|
123 |
+
#load model
|
124 |
+
model = load_model('models/mcpas/bestmodel_alphapeptidemhc.hdf5',compile=False)
|
125 |
+
#predict_on_batch
|
126 |
+
output = model.predict_on_batch([alpha_np, pep_np, mhc_np])
|
127 |
+
elif dataset=='mcpas' and shorttask=='bpm':
|
128 |
+
#load data
|
129 |
+
beta, pep, mhc = group
|
130 |
+
beta_np, pep_np, mhc_np = np.load(beta), np.load(pep), np.load(mhc)
|
131 |
+
#load model
|
132 |
+
model = load_model('models/mcpas/bestmodel_betapeptidemhc.hdf5',compile=False)
|
133 |
+
#predict_on_batch
|
134 |
+
output = model.predict_on_batch([beta_np, pep_np, mhc_np])
|
135 |
+
elif dataset=='vdjdb' and shorttask=='abp':
|
136 |
+
#load data
|
137 |
+
alpha, beta, pep = group
|
138 |
+
alpha_np, beta_np, pep_np = np.load(alpha), np.load(beta), np.load(pep)
|
139 |
+
#load model
|
140 |
+
model = load_model('models/vdjdb/bestmodel_alphabetapeptide.hdf5',compile=False)
|
141 |
+
#predict_on_batch
|
142 |
+
output = model.predict_on_batch([alpha_np, beta_np, pep_np])
|
143 |
+
elif dataset=='vdjdb' and shorttask=='abpm':
|
144 |
+
#load data
|
145 |
+
alpha, beta, pep, mhc = group
|
146 |
+
alpha_np, beta_np, pep_np, mhc_np = np.load(alpha), np.load(beta), np.load(pep), np.load(mhc)
|
147 |
+
#load model
|
148 |
+
model = load_model('models/vdjdb/bestmodel_alphabetapeptidemhc.hdf5',compile=False)
|
149 |
+
#predict_on_batch
|
150 |
+
output = model.predict_on_batch([alpha_np, beta_np, pep_np, mhc_np])
|
151 |
+
elif dataset=='vdjdb' and shorttask=='ap':
|
152 |
+
#load data
|
153 |
+
alpha, pep, = group
|
154 |
+
alpha_np, pep_np, = np.load(alpha), np.load(pep)
|
155 |
+
#load model
|
156 |
+
model = load_model('models/vdjdb/bestmodel_alphapeptide.hdf5',compile=False)
|
157 |
+
#predict_on_batch
|
158 |
+
output = model.predict_on_batch([alpha_np, pep_np])
|
159 |
+
elif dataset=='vdjdb' and shorttask=='bp':
|
160 |
+
#load data
|
161 |
+
beta, pep = group
|
162 |
+
beta_np, pep_np = np.load(beta), np.load(pep)
|
163 |
+
#load model
|
164 |
+
model = load_model('models/vdjdb/bestmodel_betapeptide.hdf5',compile=False)
|
165 |
+
#predict_on_batch
|
166 |
+
output = model.predict_on_batch([beta_np, pep_np])
|
167 |
+
elif dataset=='vdjdb' and shorttask=='apm':
|
168 |
+
#load data
|
169 |
+
alpha, pep, mhc = group
|
170 |
+
alpha_np, pep_np, mhc_np = np.load(alpha), np.load(pep), np.load(mhc)
|
171 |
+
#load model
|
172 |
+
model = load_model('models/vdjdb/bestmodel_alphapeptidemhc.hdf5',compile=False)
|
173 |
+
#predict_on_batch
|
174 |
+
output = model.predict_on_batch([alpha_np, pep_np, mhc_np])
|
175 |
+
elif dataset=='vdjdb' and shorttask=='bpm':
|
176 |
+
#load data
|
177 |
+
beta, pep, mhc = group
|
178 |
+
beta_np, pep_np, mhc_np = np.load(beta), np.load(pep), np.load(mhc)
|
179 |
+
#load model
|
180 |
+
model = load_model('models/vdjdb/bestmodel_betapeptidemhc.hdf5',compile=False)
|
181 |
+
#predict_on_batch
|
182 |
+
output = model.predict_on_batch([beta_np, pep_np, mhc_np])
|
183 |
+
|
184 |
+
# return np.around(output.squeeze(), 4)
|
185 |
+
|
186 |
+
val = np.squeeze(output)
|
187 |
+
return val
|
188 |
+
|
189 |
+
@st.cache_data
|
190 |
+
def convert_df(df):
|
191 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
192 |
+
return df.to_csv().encode('utf-8')
|
193 |
+
|
194 |
+
|
195 |
+
#####################
|
196 |
+
if st.button('Submit'):
|
197 |
+
# with st.spinner('Wait for it...'):
|
198 |
+
# time.sleep(0.5)
|
199 |
+
# res = predict_on_batch_output(dataset,shorttask,group)
|
200 |
+
# st.write("Binding Probabilities")
|
201 |
+
# st.dataframe((np.round(res, 4)))
|
202 |
+
# csv = convert_df(pd.DataFrame(np.round(res, 4), columns=['output']))
|
203 |
+
# st.download_button(label="Download Predictions",data=csv,file_name='tcresm_predictions.csv', mime='text/csv')
|
204 |
+
try:
|
205 |
+
res = predict_on_batch_output(dataset,shorttask,group)
|
206 |
+
with st.spinner('Calculating ...'):
|
207 |
+
time.sleep(0.5)
|
208 |
+
st.write("Binding Probabilities")
|
209 |
+
st.dataframe((np.round(res, 4)), use_container_width=500, height=500)
|
210 |
+
csv = convert_df(pd.DataFrame(np.round(res, 4), columns=['output']))
|
211 |
+
st.download_button(label="Download Predictions",data=csv,file_name='tcresm_predictions.csv', mime='text/csv')
|
212 |
+
except:
|
213 |
+
st.error('Please ensure you have uploaded the files before pressing the Submit button', icon="🚨")
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
if st.button("Clear All"):
|
218 |
+
# Clear values from *all* all in-memory and on-disk data caches:
|
219 |
+
# i.e. clear values from both square and cube
|
220 |
+
st.cache_data.clear()
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
st.caption('Developed By: Shashank Yadav : shashank[at]arizona.edu', unsafe_allow_html=True)
|
models/mcpas/bestmodel_alphabetapeptide.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e82a6ce84f760362b5502769d23d6af6e1955e3425faf36ebde58d61466175c9
|
3 |
+
size 9945464
|
models/mcpas/bestmodel_alphabetaptptidemhc.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06010fffacf7feebae8a7109742795b0914d6c5007960abe215a92d07b937f67
|
3 |
+
size 11343872
|
models/mcpas/bestmodel_alphapeptide.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99fb0db64587a7abf7e85068c27ae0702cca524da0fc49be925ef547c52e86da
|
3 |
+
size 7172184
|
models/mcpas/bestmodel_alphapeptidemhc.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94a58dc69a724f62de72098409e63b0e9cd09ac1b1f3bb2a317067a64dc69b10
|
3 |
+
size 8566304
|
models/mcpas/bestmodel_betapeptide.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6a470ea165a9fa9a02f6fb493dfe3b6f4332667042de0c5b9ce3020a1d56e4a
|
3 |
+
size 7172184
|
models/mcpas/bestmodel_betapeptidemhc.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:310e7c9a59408d0befaa46c7a9942c5642ab42f65c06b5de93b6755ae426965b
|
3 |
+
size 8566304
|
models/vdjdb/bestmodel_alphabetapeptide.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51dd068f6205ef33e67f75ba8ac26da064367b7b4de0baa178090d7b5e252cb6
|
3 |
+
size 9945464
|
models/vdjdb/bestmodel_alphabetapeptidemhc.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51eed8fd1e39f13db3bc3bcca7194c4d450aab603b6f35088fb9c9be868c07a8
|
3 |
+
size 18827264
|
models/vdjdb/bestmodel_alphapeptide.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f77bcfa0c11e60821b45aa859593cd8352a4d566b867f328c4ad00b83ff027f
|
3 |
+
size 7172184
|
models/vdjdb/bestmodel_alphapeptidemhc.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9ea40fa3d12ceb411c75df88ecef05368e87b6485519ef876bd05de6dc7dee8
|
3 |
+
size 8566304
|
models/vdjdb/bestmodel_betapeptide.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ba2ac4e3c602cfbe1774e5e6fb20c87bf01996e0d534da7e912d922e429a269
|
3 |
+
size 7172184
|
models/vdjdb/bestmodel_betapeptidemhc.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b112ad593e7693e6831ec5c6bea5039e60db38aff8bc56a2e9f2f0238857e29
|
3 |
+
size 8566304
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
tensorflow
|
sample_input_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2e35aa3f3fe1c15a7e595c642444b1c3433679509ef6271f3ac44e15a083485
|
3 |
+
size 611761
|