Spaces:
Sleeping
Sleeping
xinghaochen
commited on
Commit
•
5521308
1
Parent(s):
d86ac0d
update new app
Browse files- app.py +326 -0
- assets/1.jpg +0 -0
- assets/2.jpg +0 -0
- assets/3.jpg +0 -0
- assets/4.jpeg +0 -0
- assets/5.jpg +0 -0
- assets/6.jpeg +0 -0
app.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code credit: [EdgeSAM Demo](https://huggingface.co/spaces/chongzhou/EdgeSAM).
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from tinysam import sam_model_registry, SamPredictor
|
7 |
+
from PIL import ImageDraw
|
8 |
+
from utils.tools_gradio import fast_process
|
9 |
+
import copy
|
10 |
+
import argparse
|
11 |
+
|
12 |
+
snapshot_download("merve/tinysam", local_dir="tinysam")
|
13 |
+
|
14 |
+
model_type = "vit_t"
|
15 |
+
sam = sam_model_registry[model_type](checkpoint="./tinysam/tinysam.pth")
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
sam.to(device=device)
|
18 |
+
sam.eval()
|
19 |
+
predictor = SamPredictor(sam)
|
20 |
+
|
21 |
+
examples = [
|
22 |
+
["assets/1.jpg"],
|
23 |
+
["assets/2.jpg"],
|
24 |
+
["assets/3.jpg"],
|
25 |
+
["assets/4.jpeg"],
|
26 |
+
["assets/5.jpg"],
|
27 |
+
["assets/6.jpeg"]
|
28 |
+
]
|
29 |
+
|
30 |
+
# Description
|
31 |
+
title = "<center><strong><font size='8'>TinySAM<font></strong> <a href='https://github.com/xinghaochen/TinySAM'><font size='6'>[GitHub]</font></a> </center>"
|
32 |
+
|
33 |
+
description_p = """ # Instructions for point mode
|
34 |
+
|
35 |
+
1. Upload an image or click one of the provided examples.
|
36 |
+
2. Select the point type.
|
37 |
+
3. Click once or multiple times on the image to indicate the object of interest.
|
38 |
+
4. The Clear button clears all the points.
|
39 |
+
5. The Reset button resets both points and the image.
|
40 |
+
|
41 |
+
"""
|
42 |
+
|
43 |
+
description_b = """ # Instructions for box mode
|
44 |
+
|
45 |
+
1. Upload an image or click one of the provided examples.
|
46 |
+
2. Click twice on the image (diagonal points of the box).
|
47 |
+
3. The Clear button clears the box.
|
48 |
+
4. The Reset button resets both the box and the image.
|
49 |
+
|
50 |
+
"""
|
51 |
+
|
52 |
+
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
53 |
+
|
54 |
+
|
55 |
+
def reset(session_state):
|
56 |
+
session_state['coord_list'] = []
|
57 |
+
session_state['label_list'] = []
|
58 |
+
session_state['box_list'] = []
|
59 |
+
session_state['ori_image'] = None
|
60 |
+
session_state['image_with_prompt'] = None
|
61 |
+
session_state['feature'] = None
|
62 |
+
return None, session_state
|
63 |
+
|
64 |
+
|
65 |
+
def reset_all(session_state):
|
66 |
+
session_state['coord_list'] = []
|
67 |
+
session_state['label_list'] = []
|
68 |
+
session_state['box_list'] = []
|
69 |
+
session_state['ori_image'] = None
|
70 |
+
session_state['image_with_prompt'] = None
|
71 |
+
session_state['feature'] = None
|
72 |
+
return None, None, session_state
|
73 |
+
|
74 |
+
|
75 |
+
def clear(session_state):
|
76 |
+
session_state['coord_list'] = []
|
77 |
+
session_state['label_list'] = []
|
78 |
+
session_state['box_list'] = []
|
79 |
+
session_state['image_with_prompt'] = copy.deepcopy(session_state['ori_image'])
|
80 |
+
return session_state['ori_image'], session_state
|
81 |
+
|
82 |
+
|
83 |
+
def on_image_upload(
|
84 |
+
image,
|
85 |
+
session_state,
|
86 |
+
input_size=1024
|
87 |
+
):
|
88 |
+
session_state['coord_list'] = []
|
89 |
+
session_state['label_list'] = []
|
90 |
+
session_state['box_list'] = []
|
91 |
+
|
92 |
+
input_size = int(input_size)
|
93 |
+
w, h = image.size
|
94 |
+
scale = input_size / max(w, h)
|
95 |
+
new_w = int(w * scale)
|
96 |
+
new_h = int(h * scale)
|
97 |
+
image = image.resize((new_w, new_h))
|
98 |
+
session_state['ori_image'] = copy.deepcopy(image)
|
99 |
+
session_state['image_with_prompt'] = copy.deepcopy(image)
|
100 |
+
print("Image changed")
|
101 |
+
nd_image = np.array(image)
|
102 |
+
session_state['feature'] = None #predictor.set_image(nd_image)
|
103 |
+
|
104 |
+
return image, session_state
|
105 |
+
|
106 |
+
|
107 |
+
def convert_box(xyxy):
|
108 |
+
min_x = min(xyxy[0][0], xyxy[1][0])
|
109 |
+
max_x = max(xyxy[0][0], xyxy[1][0])
|
110 |
+
min_y = min(xyxy[0][1], xyxy[1][1])
|
111 |
+
max_y = max(xyxy[0][1], xyxy[1][1])
|
112 |
+
xyxy[0][0] = min_x
|
113 |
+
xyxy[1][0] = max_x
|
114 |
+
xyxy[0][1] = min_y
|
115 |
+
xyxy[1][1] = max_y
|
116 |
+
return xyxy
|
117 |
+
|
118 |
+
|
119 |
+
def segment_with_points(
|
120 |
+
label,
|
121 |
+
session_state,
|
122 |
+
evt: gr.SelectData,
|
123 |
+
input_size=1024,
|
124 |
+
better_quality=False,
|
125 |
+
withContours=True,
|
126 |
+
use_retina=True,
|
127 |
+
mask_random_color=False,
|
128 |
+
):
|
129 |
+
x, y = evt.index[0], evt.index[1]
|
130 |
+
point_radius, point_color = 5, (97, 217, 54) if label == "Positive" else (237, 34, 13)
|
131 |
+
session_state['coord_list'].append([x, y])
|
132 |
+
session_state['label_list'].append(1 if label == "Positive" else 0)
|
133 |
+
|
134 |
+
print(f"coord_list: {session_state['coord_list']}")
|
135 |
+
print(f"label_list: {session_state['label_list']}")
|
136 |
+
|
137 |
+
draw = ImageDraw.Draw(session_state['image_with_prompt'])
|
138 |
+
draw.ellipse(
|
139 |
+
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
|
140 |
+
fill=point_color,
|
141 |
+
)
|
142 |
+
image = session_state['image_with_prompt']
|
143 |
+
|
144 |
+
coord_np = np.array(session_state['coord_list'])
|
145 |
+
label_np = np.array(session_state['label_list'])
|
146 |
+
masks, scores, logits = predictor.predict(
|
147 |
+
point_coords=coord_np,
|
148 |
+
point_labels=label_np,
|
149 |
+
)
|
150 |
+
print(f'scores: {scores}')
|
151 |
+
area = masks.sum(axis=(1, 2))
|
152 |
+
print(f'area: {area}')
|
153 |
+
|
154 |
+
annotations = np.expand_dims(masks[scores.argmax()], axis=0)
|
155 |
+
|
156 |
+
seg = fast_process(
|
157 |
+
annotations=annotations,
|
158 |
+
image=image,
|
159 |
+
device=device,
|
160 |
+
scale=(1024 // input_size),
|
161 |
+
better_quality=better_quality,
|
162 |
+
mask_random_color=mask_random_color,
|
163 |
+
bbox=None,
|
164 |
+
use_retina=use_retina,
|
165 |
+
withContours=withContours,
|
166 |
+
)
|
167 |
+
|
168 |
+
return seg, session_state
|
169 |
+
|
170 |
+
|
171 |
+
def segment_with_box(
|
172 |
+
session_state,
|
173 |
+
evt: gr.SelectData,
|
174 |
+
input_size=1024,
|
175 |
+
better_quality=False,
|
176 |
+
withContours=True,
|
177 |
+
use_retina=True,
|
178 |
+
mask_random_color=False,
|
179 |
+
):
|
180 |
+
x, y = evt.index[0], evt.index[1]
|
181 |
+
point_radius, point_color, box_outline = 5, (97, 217, 54), 5
|
182 |
+
box_color = (0, 255, 0)
|
183 |
+
|
184 |
+
if len(session_state['box_list']) == 0:
|
185 |
+
session_state['box_list'].append([x, y])
|
186 |
+
elif len(session_state['box_list']) == 1:
|
187 |
+
session_state['box_list'].append([x, y])
|
188 |
+
elif len(session_state['box_list']) == 2:
|
189 |
+
session_state['image_with_prompt'] = copy.deepcopy(session_state['ori_image'])
|
190 |
+
session_state['box_list'] = [[x, y]]
|
191 |
+
|
192 |
+
print(f"box_list: {session_state['box_list']}")
|
193 |
+
|
194 |
+
draw = ImageDraw.Draw(session_state['image_with_prompt'])
|
195 |
+
draw.ellipse(
|
196 |
+
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
|
197 |
+
fill=point_color,
|
198 |
+
)
|
199 |
+
image = session_state['image_with_prompt']
|
200 |
+
|
201 |
+
if len(session_state['box_list']) == 2:
|
202 |
+
box = convert_box(session_state['box_list'])
|
203 |
+
xy = (box[0][0], box[0][1], box[1][0], box[1][1])
|
204 |
+
draw.rectangle(
|
205 |
+
xy,
|
206 |
+
outline=box_color,
|
207 |
+
width=box_outline
|
208 |
+
)
|
209 |
+
|
210 |
+
box_np = np.array(xy)
|
211 |
+
masks, scores, _ = predictor.predict(
|
212 |
+
point_coords=None,
|
213 |
+
point_labels=None,
|
214 |
+
box=box_np[None, :],
|
215 |
+
)
|
216 |
+
annotations = np.expand_dims(masks[scores.argmax()], axis=0)
|
217 |
+
|
218 |
+
|
219 |
+
seg = fast_process(
|
220 |
+
annotations=annotations,
|
221 |
+
image=image,
|
222 |
+
device=device,
|
223 |
+
scale=(1024 // input_size),
|
224 |
+
better_quality=better_quality,
|
225 |
+
mask_random_color=mask_random_color,
|
226 |
+
bbox=None,
|
227 |
+
use_retina=use_retina,
|
228 |
+
withContours=withContours,
|
229 |
+
)
|
230 |
+
return seg, session_state
|
231 |
+
return image, session_state
|
232 |
+
|
233 |
+
|
234 |
+
img_p = gr.Image(label="Input with points", type="pil")
|
235 |
+
img_b = gr.Image(label="Input with box", type="pil")
|
236 |
+
|
237 |
+
with gr.Blocks(css=css, title="EdgeSAM") as demo:
|
238 |
+
session_state = gr.State({
|
239 |
+
'coord_list': [],
|
240 |
+
'label_list': [],
|
241 |
+
'box_list': [],
|
242 |
+
'ori_image': None,
|
243 |
+
'image_with_prompt': None,
|
244 |
+
'feature': None
|
245 |
+
})
|
246 |
+
|
247 |
+
with gr.Row():
|
248 |
+
with gr.Column(scale=1):
|
249 |
+
# Title
|
250 |
+
gr.Markdown(title)
|
251 |
+
|
252 |
+
with gr.Tab("Point mode") as tab_p:
|
253 |
+
# Images
|
254 |
+
with gr.Row(variant="panel"):
|
255 |
+
with gr.Column(scale=1):
|
256 |
+
img_p.render()
|
257 |
+
with gr.Column(scale=1):
|
258 |
+
with gr.Row():
|
259 |
+
add_or_remove = gr.Radio(
|
260 |
+
["Positive", "Negative"],
|
261 |
+
value="Positive",
|
262 |
+
label="Point Type"
|
263 |
+
)
|
264 |
+
|
265 |
+
with gr.Column():
|
266 |
+
clear_btn_p = gr.Button("Clear", variant="secondary")
|
267 |
+
reset_btn_p = gr.Button("Reset", variant="secondary")
|
268 |
+
with gr.Row():
|
269 |
+
gr.Markdown(description_p)
|
270 |
+
|
271 |
+
with gr.Row():
|
272 |
+
with gr.Column():
|
273 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
274 |
+
gr.Examples(
|
275 |
+
examples=examples,
|
276 |
+
inputs=[img_p, session_state],
|
277 |
+
outputs=[img_p, session_state],
|
278 |
+
examples_per_page=8,
|
279 |
+
fn=on_image_upload,
|
280 |
+
run_on_click=True
|
281 |
+
)
|
282 |
+
|
283 |
+
with gr.Tab("Box mode") as tab_b:
|
284 |
+
# Images
|
285 |
+
with gr.Row(variant="panel"):
|
286 |
+
with gr.Column(scale=1):
|
287 |
+
img_b.render()
|
288 |
+
with gr.Row():
|
289 |
+
with gr.Column():
|
290 |
+
clear_btn_b = gr.Button("Clear", variant="secondary")
|
291 |
+
reset_btn_b = gr.Button("Reset", variant="secondary")
|
292 |
+
gr.Markdown(description_b)
|
293 |
+
|
294 |
+
with gr.Row():
|
295 |
+
with gr.Column():
|
296 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
297 |
+
gr.Examples(
|
298 |
+
examples=examples,
|
299 |
+
inputs=[img_b, session_state],
|
300 |
+
outputs=[img_b, session_state],
|
301 |
+
examples_per_page=8,
|
302 |
+
fn=on_image_upload,
|
303 |
+
run_on_click=True
|
304 |
+
)
|
305 |
+
|
306 |
+
with gr.Row():
|
307 |
+
with gr.Column(scale=1):
|
308 |
+
gr.Markdown(
|
309 |
+
"<center><img src='https://visitor-badge.laobi.icu/badge?page_id=chongzhou/edgesam' alt='visitors'></center>")
|
310 |
+
|
311 |
+
img_p.upload(on_image_upload, [img_p, session_state], [img_p, session_state])
|
312 |
+
img_p.select(segment_with_points, [add_or_remove, session_state], [img_p, session_state])
|
313 |
+
|
314 |
+
clear_btn_p.click(clear, [session_state], [img_p, session_state])
|
315 |
+
reset_btn_p.click(reset, [session_state], [img_p, session_state])
|
316 |
+
tab_p.select(fn=reset_all, inputs=[session_state], outputs=[img_p, img_b, session_state])
|
317 |
+
|
318 |
+
img_b.upload(on_image_upload, [img_b, session_state], [img_b, session_state])
|
319 |
+
img_b.select(segment_with_box, [session_state], [img_b, session_state])
|
320 |
+
|
321 |
+
clear_btn_b.click(clear, [session_state], [img_b, session_state])
|
322 |
+
reset_btn_b.click(reset, [session_state], [img_b, session_state])
|
323 |
+
tab_b.select(fn=reset_all, inputs=[session_state], outputs=[img_p, img_b, session_state])
|
324 |
+
|
325 |
+
demo.queue()
|
326 |
+
demo.launch()
|
assets/1.jpg
ADDED
assets/2.jpg
ADDED
assets/3.jpg
ADDED
assets/4.jpeg
ADDED
assets/5.jpg
ADDED
assets/6.jpeg
ADDED