# Code credit: [EfficientSAM Demo](https://huggingface.co/spaces/yunyangx/EfficientSAM).
import copy
import os # noqa
import gradio as gr
import numpy as np
import torch
from PIL import ImageDraw
from torchvision.transforms import ToTensor
from utils.tools import format_results, point_prompt
from utils.tools_gradio import fast_process
from tinysam import sam_model_registry, SamPredictor
from huggingface_hub import snapshot_download
#snapshot_download("merve/tinysam", local_dir="tinysam")
URL = "https://github.com/xinghaochen/TinySAM/releases/download/1.0/tinysam.pth"
response = wget.download(URL, "tinysam.pth")
model_type = "vit_t"
sam = sam_model_registry[model_type](checkpoint="./tinysam.pth")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
sam.to(device=device)
sam.eval()
predictor = SamPredictor(sam)
# Description
title = "
TinySAM [GitHub] "
description_e = """This is a demo of TinySAM Model](https://github.com/xinghaochen/TinySAM).
"""
description_p = """# Interactive Instance Segmentation
- Point-prompt instruction
- Click on the left image (point input), visualizing the point on the right image
- Click the button of Segment with Point Prompt
- Box-prompt instruction
- Click on the left image (one point input), visualizing the point on the right image
- Click on the left image (another point input), visualizing the point and the box on the right image
- Click the button of Segment with Box Prompt
- Github [link](https://github.com/xinghaochen/TinySAM)
"""
# examples
examples = [
["assets/1.jpg"],
["assets/2.jpg"],
["assets/3.jpg"],
["assets/4.jpeg"],
["assets/5.jpg"],
["assets/6.jpeg"]
]
default_example = examples[0]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def segment_with_boxs(
image,
seg_image,
global_points,
global_point_label,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
if len(global_points) < 2:
return seg_image, global_points, global_point_label
print("Original Image : ", image.size)
input_size = int(input_size)
w, h = image.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h))
print("Scaled Image : ", image.size)
print("Scale : ", scale)
scaled_points = np.array(
[[int(x * scale) for x in point] for point in global_points]
)
scaled_points = scaled_points[:2]
scaled_point_label = np.array(global_point_label)[:2]
print(scaled_points, scaled_points is not None)
print(scaled_point_label, scaled_point_label is not None)
if scaled_points.size == 0 and scaled_point_label.size == 0:
print("No points selected")
return image, global_points, global_point_label
nd_image = np.array(image)
img_tensor = ToTensor()(nd_image)
#coord_np = np.array(session_state['coord_list'])
#label_np = np.array(session_state['label_list'])
print(scaled_points, scaled_point_label)
predictor.set_image(np.array(image))
input_box = scaled_points.reshape([4])
print('box', input_box)
masks, scores, logits = predictor.predict(
point_coords=None, #scaled_points,
point_labels=None, #scaled_point_label,
box=input_box[None, :]
)
print(f'scores: {scores}')
area = masks.sum(axis=(1, 2))
print(f'area: {area}')
annotations = np.expand_dims(masks[scores.argmax()], axis=0)
print(annotations)
fig = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
use_retina=use_retina,
bbox = scaled_points.reshape([4]),
withContours=withContours,
)
global_points = []
global_point_label = []
# return fig, None
return fig, global_points, global_point_label
def segment_with_points(
image,
global_points,
global_point_label,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
print("Original Image : ", image.size)
input_size = int(input_size)
w, h = image.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h))
print("Scaled Image : ", image.size)
print("Scale : ", scale)
if global_points is None:
return image, global_points, global_point_label
if len(global_points) < 1:
return image, global_points, global_point_label
scaled_points = np.array(
[[int(x * scale) for x in point] for point in global_points]
)
scaled_point_label = np.array(global_point_label)
print(scaled_points, scaled_points is not None)
print(scaled_point_label, scaled_point_label is not None)
if scaled_points.size == 0 and scaled_point_label.size == 0:
print("No points selected")
return image, global_points, global_point_label
nd_image = np.array(image)
img_tensor = ToTensor()(nd_image)
print(img_tensor.shape)
predictor.set_image(nd_image)
masks, scores, logits = predictor.predict(
point_coords=scaled_points,
point_labels=global_point_label,
)
print(f'scores: {scores}')
area = masks.sum(axis=(1, 2))
print(f'area: {area}')
annotations = np.expand_dims(masks[scores.argmax()], axis=0)
fig = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
points = scaled_points,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
global_points = []
global_point_label = []
# return fig, None
return fig, global_points, global_point_label
def get_points_with_draw(image, cond_image, global_points, global_point_label, evt: gr.SelectData):
print("Starting functioning")
if len(global_points) == 0:
image = copy.deepcopy(cond_image)
x, y = evt.index[0], evt.index[1]
label = "Add Mask"
point_radius, point_color = 8, (255, 255, 0) if label == "Add Mask" else (
255,
0,
255,
)
global_points.append([x, y])
global_point_label.append(1 if label == "Add Mask" else 0)
print(x, y, label == "Add Mask")
if image is not None:
draw = ImageDraw.Draw(image)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
return image, global_points, global_point_label
def get_points_with_draw_(image, cond_image, global_points, global_point_label, evt: gr.SelectData):
if len(global_points) == 0:
image = copy.deepcopy(cond_image)
if len(global_points) > 2:
return image, global_points, global_point_label
x, y = evt.index[0], evt.index[1]
label = "Add Mask"
point_radius, point_color = 8, (255, 255, 0) if label == "Add Mask" else (
255,
0,
255,
)
global_points.append([x, y])
global_point_label.append(1 if label == "Add Mask" else 0)
print(x, y, label == "Add Mask")
if image is not None:
draw = ImageDraw.Draw(image)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
if len(global_points) == 2:
x1, y1 = global_points[0]
x2, y2 = global_points[1]
if x1 < x2 and y1 < y2:
draw.rectangle([x1, y1, x2, y2], outline="red", width=5)
elif x1 < x2 and y1 >= y2:
draw.rectangle([x1, y2, x2, y1], outline="red", width=5)
global_points[0][0] = x1
global_points[0][1] = y2
global_points[1][0] = x2
global_points[1][1] = y1
elif x1 >= x2 and y1 < y2:
draw.rectangle([x2, y1, x1, y2], outline="red", width=5)
global_points[0][0] = x2
global_points[0][1] = y1
global_points[1][0] = x1
global_points[1][1] = y2
elif x1 >= x2 and y1 >= y2:
draw.rectangle([x2, y2, x1, y1], outline="red", width=5)
global_points[0][0] = x2
global_points[0][1] = y2
global_points[1][0] = x1
global_points[1][1] = y1
return image, global_points, global_point_label
cond_img_p = gr.Image(label="Input with Point", value=default_example[0], type="pil")
cond_img_b = gr.Image(label="Input with Box", value=default_example[0], type="pil")
segm_img_p = gr.Image(
label="Segmented Image with Point-Prompt", interactive=False, type="pil"
)
segm_img_b = gr.Image(
label="Segmented Image with Box-Prompt", interactive=False, type="pil"
)
input_size_slider = gr.components.Slider(
minimum=512,
maximum=1024,
value=1024,
step=64,
label="Input_size",
info="Our model was trained on a size of 1024",
)
with gr.Blocks(css=css, title="TinySAM") as demo:
global_points = gr.State([])
global_point_label = gr.State([])
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Tab("Point mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_p.render()
with gr.Column(scale=1):
segm_img_p.render()
# Submit & Clear
# ###
with gr.Row():
with gr.Column():
with gr.Column():
segment_btn_p = gr.Button(
"Segment with Point Prompt", variant="primary"
)
clear_btn_p = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_p],
examples_per_page=6,
)
with gr.Column():
# Description
gr.Markdown(description_p)
with gr.Tab("Box mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_b.render()
with gr.Column(scale=1):
segm_img_b.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Column():
segment_btn_b = gr.Button(
"Segment with Box Prompt", variant="primary"
)
clear_btn_b = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_b],
examples_per_page=6,
)
with gr.Column():
# Description
gr.Markdown(description_p)
cond_img_p.select(get_points_with_draw, inputs = [segm_img_p, cond_img_p, global_points, global_point_label], outputs = [segm_img_p, global_points, global_point_label])
cond_img_b.select(get_points_with_draw_, [segm_img_b, cond_img_b, global_points, global_point_label], [segm_img_b, global_points, global_point_label])
segment_btn_p.click(
segment_with_points, inputs=[cond_img_p, global_points, global_point_label], outputs=[segm_img_p, global_points, global_point_label]
)
segment_btn_b.click(
segment_with_boxs, inputs=[cond_img_b, segm_img_b, global_points, global_point_label], outputs=[segm_img_b,global_points, global_point_label]
)
def clear():
return None, None, [], []
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p, global_points, global_point_label])
clear_btn_b.click(clear, outputs=[cond_img_b, segm_img_b, global_points, global_point_label])
demo.queue()
demo.launch()