QinOwen commited on
Commit
f80aade
1 Parent(s): 1759457
VADER-VideoCrafter/lvdm/models/samplers/ddim.py CHANGED
@@ -153,12 +153,12 @@ class DDIMSampler(object):
153
  else:
154
  img = x_T
155
 
156
- print("x_T: ", x_T)
157
- print("shape: ", shape)
158
- print('random seed debug: ', torch.randn(100, device=device).sum())
159
- print("Debug initial noise: ", torch.randn(shape, device=device).sum().item())
160
- print("Debug initial noise: ", torch.randn(shape, device=device).sum().item())
161
- print("noise device: ", img.device)
162
 
163
  if timesteps is None:
164
  timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
 
153
  else:
154
  img = x_T
155
 
156
+ # print("x_T: ", x_T)
157
+ # print("shape: ", shape)
158
+ # print('random seed debug: ', torch.randn(100, device=device).sum())
159
+ # print("Debug initial noise: ", torch.randn(shape, device=device).sum().item())
160
+ # print("Debug initial noise: ", torch.randn(shape, device=device).sum().item())
161
+ # print("noise device: ", img.device)
162
 
163
  if timesteps is None:
164
  timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
VADER-VideoCrafter/scripts/main/train_t2v_lora.py CHANGED
@@ -589,9 +589,9 @@ def run_training(args, model, **kwargs):
589
  # load the pretrained LoRA model
590
  peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
591
 
592
- print('random seed debug: ', torch.randn(100, device=accelerator.device).sum())
593
  print("precision: ", peft_model.dtype)
594
- # precision of first_stage_model
595
  print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
596
  print("peft_model device: ", peft_model.device)
597
 
@@ -651,8 +651,7 @@ def run_training(args, model, **kwargs):
651
  raise NotImplementedError
652
 
653
  # Inference Step 3.2: inference, batch_samples shape: batch, <samples>, c, t, h, w
654
- # no backprop_mode=args.backprop_mode because it is inference process
655
- seed_everything_self(args.seed)
656
  if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
657
  batch_samples = batch_ddim_sampling(peft_model.module, cond, noise_shape, args.n_samples, \
658
  args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
 
589
  # load the pretrained LoRA model
590
  peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
591
 
592
+ # print('random seed debug: ', torch.randn(100, device=accelerator.device).sum())
593
  print("precision: ", peft_model.dtype)
594
+ # # precision of first_stage_model
595
  print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
596
  print("peft_model device: ", peft_model.device)
597
 
 
651
  raise NotImplementedError
652
 
653
  # Inference Step 3.2: inference, batch_samples shape: batch, <samples>, c, t, h, w
654
+ # no backprop_mode=args.backprop_mode because it is inference process
 
655
  if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
656
  batch_samples = batch_ddim_sampling(peft_model.module, cond, noise_shape, args.n_samples, \
657
  args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
app.py CHANGED
@@ -12,12 +12,13 @@ from train_t2v_lora import main_fn, setup_model
12
 
13
  examples = [
14
  ["A fairy tends to enchanted, glowing flowers.", 'huggingface-hps-aesthetic', 8, 400, 384, 512, 12.0, 25, 1.0, 24, 10],
15
- ["A cat playing an electric guitar in a loft with industrial-style decor and soft, multicolored lights.", 'huggingface-hps-aesthetic', 8, 206, 384, 512, 12.0, 25, 1.0, 24, 10],
16
  ["A raccoon playing a guitar under a blossoming cherry tree.", 'huggingface-hps-aesthetic', 8, 204, 384, 512, 12.0, 25, 1.0, 24, 10],
 
17
  ["A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.",
18
  "huggingface-pickscore", 16, 205, 384, 512, 12.0, 25, 1.0, 24, 10],
19
  ["A talking bird with shimmering feathers and a melodious voice leads an adventure to find a legendary treasure, guiding through enchanted forests, ancient ruins, and mystical challenges.",
20
- "huggingface-pickscore", 16, 204, 384, 512, 12.0, 25, 1.0, 24, 10]
21
  ]
22
 
23
  model = setup_model()
 
12
 
13
  examples = [
14
  ["A fairy tends to enchanted, glowing flowers.", 'huggingface-hps-aesthetic', 8, 400, 384, 512, 12.0, 25, 1.0, 24, 10],
15
+ ["A cat playing an electric guitar in a loft with industrial-style decor and soft, multicolored lights.", 'huggingface-hps-aesthetic', 8, 208, 384, 512, 12.0, 25, 1.0, 24, 10],
16
  ["A raccoon playing a guitar under a blossoming cherry tree.", 'huggingface-hps-aesthetic', 8, 204, 384, 512, 12.0, 25, 1.0, 24, 10],
17
+ ["A raccoon playing an electric bass in a garage band setting.", 'huggingface-hps-aesthetic', 8, 400, 384, 512, 12.0, 25, 1.0, 24, 10],
18
  ["A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.",
19
  "huggingface-pickscore", 16, 205, 384, 512, 12.0, 25, 1.0, 24, 10],
20
  ["A talking bird with shimmering feathers and a melodious voice leads an adventure to find a legendary treasure, guiding through enchanted forests, ancient ruins, and mystical challenges.",
21
+ "huggingface-pickscore", 16, 600, 384, 512, 12.0, 25, 1.0, 24, 10]
22
  ]
23
 
24
  model = setup_model()