plentas / plentas.py
xiomarablanco's picture
Procesando respuestas de Moodle
ce84b09
raw
history blame
6.94 kB
import pandas as pd
from codeScripts.methodologyPlentas import *
from codeScripts.rubrics import Ortografia2, Sintaxis2, GenerateFeedback
from codeScripts.settings import GetSettings
from codeScripts.utils import getIDrange, splitResponse
class Plentas():
def __init__(self, config, studentsData):
self.settings = GetSettings(config, studentsData)
#semantica
self.semantic_methodology = PlentasMethodology(self.settings)
#ortografia
self.ortografia = Ortografia2(self.settings)
#sintaxis
self.sintaxis = Sintaxis2(self.settings)
def __jsonToExcel__(self, jsonFile):
outputExcel = dict()
#print(jsonFile)
for student in jsonFile:
for numb_id in student.keys():
for column in student[numb_id].keys():
if column == "SimilitudBert" or column == "SimilitudSpacy":
pass
else:
if column not in outputExcel.keys():
outputExcel[column] = []
outputExcel[column].append(student[numb_id][column])
df = pd.DataFrame(data=outputExcel)
#df = (df.T)
df.to_excel('archivos/OutputFiles2/backendExcel.xlsx')
return [jsonFile, outputExcel]
def setApiSettings(self, api_settings):
#lectura de parametros de la api
self.settings.setApiSettings(api_settings)
def processApiData(self):
if self.settings.PesoOrtografia == 0.0:
self.settings.Ortografia = 0
if self.settings.PesoSintaxis == 0.0:
self.settings.Sintaxis = 0
if self.settings.PesoSemantics == 0.0:
self.settings.Semantica = 0
AnalysisOfResponses = []
IDs = getIDrange(self.settings.rango_ID, self.settings.answersDF)
print("Total IDS: " + str(len(IDs)))
for id in IDs:
studentID = self.settings.answersDF['hashed_id'][id]
print("StudentID: " + studentID)
self.settings.studentID = studentID
nota_rubrica_spacy = 0
nota_rubrica_bert = 0
respuesta_alumno_raw = self.settings.answersDF['respuesta'][id].lower()
if self.settings.Sintaxis:
#ponderacion dentro de la funci贸n
nota_rubrica_sintaxis = self.sintaxis.Evaluation(respuesta_alumno_raw)
nota_rubrica_spacy = nota_rubrica_spacy + nota_rubrica_sintaxis
nota_rubrica_bert = nota_rubrica_bert + nota_rubrica_sintaxis
else:
nota_rubrica_sintaxis = 0
if self.settings.Ortografia:
#ponderacion dentro de la funci贸n
nota_rubrica_ortografia = self.ortografia.Evaluation(respuesta_alumno_raw)
nota_rubrica_spacy = nota_rubrica_spacy + nota_rubrica_ortografia
nota_rubrica_bert = nota_rubrica_bert + nota_rubrica_ortografia
else:
nota_rubrica_ortografia = 0
if self.settings.Semantica:
sentencesArr = splitResponse(respuesta_alumno_raw)
spacy_eval = self.semantic_methodology.getSimilarity(sentencesArr, "spacy")
bert_eval = self.semantic_methodology.getSimilarity(sentencesArr, "bert")
for sim1, sim2, nminip in zip(spacy_eval, bert_eval, range(len(spacy_eval))):
if sim1 < 0.5:
self.settings.minipreguntasMalSpacy = self.settings.minipreguntasMalSpacy + "Minipregunta " + str(nminip + 1)
if sim2 < 0.5:
if self.settings.minipreguntasMalBert != "" and nminip>0:
self.settings.minipreguntasMalBert = self.settings.minipreguntasMalBert + ", "
self.settings.minipreguntasMalBert = self.settings.minipreguntasMalBert + "Minipregunta " + str(nminip + 1)
spacy_eval_umbral = self.semantic_methodology.EvaluationMethod(studentID, "" if len(sentencesArr) == 1 and sentencesArr[0] == '' else sentencesArr, spacy_eval, "spacy")
bert_eval_umbral = self.semantic_methodology.EvaluationMethod(studentID, "" if len(sentencesArr) == 1 and sentencesArr[0] == '' else sentencesArr, bert_eval, "bert")
nota_rubrica_spacy = nota_rubrica_spacy + self.settings.PesoSemantics * spacy_eval_umbral
nota_rubrica_bert = nota_rubrica_bert + self.settings.PesoSemantics * bert_eval_umbral
else:
spacy_eval_umbral = 0
bert_eval_umbral = 0
feedback = GenerateFeedback(self.settings, respuesta_alumno_raw,nota_rubrica_ortografia, nota_rubrica_sintaxis, spacy_eval_umbral * self.settings.PesoSemantics, bert_eval_umbral * self.settings.PesoSemantics)
self.settings.minipreguntasMalSpacy = ""
self.settings.minipreguntasMalBert = ""
AnalysisOfResponses.append({ id : {
"ID": studentID,
"SimilitudSpacy": round(nota_rubrica_spacy,2),
"SimilitudBert": round(nota_rubrica_bert,2),
"NotaSemanticaSpacy": round(spacy_eval_umbral * self.settings.PesoSemantics,2),
"NotaSemanticaBert": round(bert_eval_umbral * self.settings.PesoSemantics,2),
"NotaSintaxis": round(nota_rubrica_sintaxis,2),
"NotaOrtografia": round(nota_rubrica_ortografia,2),
"NotaTotalSpacy": (round(nota_rubrica_ortografia,2) + round(nota_rubrica_sintaxis,2) + round(spacy_eval_umbral * self.settings.PesoSemantics,2))*10,
"NotaTotalBert": (round(nota_rubrica_ortografia,2) + round(nota_rubrica_sintaxis,2) + round(bert_eval_umbral * self.settings.PesoSemantics,2))*10,
"Feedback": feedback }
} )
AnalysisOfResponses = self.__jsonToExcel__(AnalysisOfResponses)
self.semantic_methodology.SemanticLevel.output.saveSimilarityResults(self.settings, "spacy")
self.semantic_methodology.SemanticLevel.output.saveSimilarityResults(self.settings, "bert")
if self.settings.Sintaxis:
self.sintaxis.saveResults()
if self.settings.Ortografia:
self.ortografia.SaveMistakes()
#print(AnalysisOfResponses)
return AnalysisOfResponses