from transformers import AutoModelForCausalLM, AutoTokenizer import torch #set up the model tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") #Defining a predict function def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).split("<|endoftext|>") response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list return response, history #creating a gradio interface import gradio as gr demo = gr.Interface(fn=predict, examples=["How many birds exist on Earth"], inputs=["text", "state"], outputs=["chatbot", "state"]) demo.launch()