text2image / app.py
xnetba's picture
Update app.py
545c3fb
raw
history blame
1.58 kB
import gradio as gr
import gradio.components as comp
import os
api_key = os.environ.get("HUGGINGFACE_API_KEY")
#model_list = [
# "stabilityai/stable-diffusion-xl-base-0.9",
# "stabilityai/stable-diffusion-2-1",
# "stabilityai/stable-diffusion-xl-refiner-0.9",
# "stabilityai/stable-diffusion-2-1-base",
# "stabilityai/stable-diffusion-2",
# "stabilityai/stable-diffusion-2-inpainting",
# "stabilityai/stable-diffusion-x4-upscaler",
# "stabilityai/stable-diffusion-2-depth",
# "stabilityai/stable-diffusion-2-base",
# "stabilityai/stable-diffusion-2-1-unclip",
# "helenai/stabilityai-stable-diffusion-2-1-base-ov",
# "helenai/stabilityai-stable-diffusion-2-1-ov",
# "stabilityai/stable-diffusion-2-1-unclip-small"
#]
#default_model = "stabilityai/stable-diffusion-2"
#model_name = gr.inputs.Dropdown(choices=model_list, label="Select Model", default=default_model)
#def generate_image(text, default_model):
# model = gr.load(default_model, source="huggingface", api_key=api_key)
# return model.predict(text)
#input_text = gr.inputs.Textbox(label="Input Text")
#output_image = comp.Image(label="Generated Image")
#iface = gr.Interface(
# fn=generate_image,
# inputs=[input_text, default_model],
# outputs=output_image,
# title="Text to Image Generation",
# description="Generate an image from input text using a Hugging Face model."
#)
#iface.launch()
gr.Interface.load("models/stabilityai/stable-diffusion-2-1").launch()
#gr.load("models/stabilityai/stable-diffusion-2-1-base").launch(auth=("admin", "pass"))