xqt commited on
Commit
6a53904
β€’
1 Parent(s): f3d3559

UPD: added documentation for Image Segmentation and Auto Segmentation

Browse files
Files changed (1) hide show
  1. SegmentAnything2AssistApp.py +56 -13
SegmentAnything2AssistApp.py CHANGED
@@ -319,7 +319,12 @@ def __generate_auto_mask(
319
 
320
 
321
  with gradio.Blocks() as base_app:
322
- gradio.Markdown("# SegmentAnything2Assist")
 
 
 
 
 
323
  with gradio.Row():
324
  with gradio.Column():
325
  base_model_choice = gradio.Dropdown(
@@ -350,19 +355,27 @@ with gradio.Blocks() as base_app:
350
  with gradio.Accordion("Image Annotation Documentation", open=False):
351
  gradio.Markdown(
352
  """
 
 
353
  Image annotation allows you to mark specific regions of an image with labels.
354
- In this app, you can annotate an image by drawing boxes and assigning labels to them.
355
  The labels can be either '+' or '-'.
356
- To annotate an image, simply click and drag to draw a box around the desired region.
357
- You can add multiple boxes with different labels.
358
- Once you have annotated the image, click the 'Generate Mask' button to generate a mask based on the annotations.
359
- The mask can be either a binary mask or a segmented mask, depending on the selected output mode.
360
- You can switch between the output modes using the radio buttons.
361
- If you make any changes to the annotations or the output mode, you need to regenerate the mask by clicking the button again.
362
- Note that the advanced options allow you to adjust the SAM mask threshold, maximum hole area, and maximum sprinkle area.
363
- These options control the sensitivity and accuracy of the segmentation process.
364
- Experiment with different settings to achieve the desired results.
365
- """
 
 
 
 
 
 
366
  )
367
  image_input = gradio_image_annotation.image_annotator(
368
  example_image_annotation
@@ -440,7 +453,37 @@ with gradio.Blocks() as base_app:
440
  with gradio.Accordion("Auto Annotation Documentation", open=False):
441
  gradio.Markdown(
442
  """
443
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444
  )
445
  auto_input = gradio.Image("assets/cars.jpg")
446
  with gradio.Accordion("Advanced Options", open=False):
 
319
 
320
 
321
  with gradio.Blocks() as base_app:
322
+ gradio.Markdown(
323
+ """
324
+ <h1 style="text-align: center;">Segment Anything 2 Assist πŸš€</h1>
325
+ <p style="text-align: center;">A tool for advanced image segmentation and annotation. πŸ–ΌοΈβœοΈ</p>
326
+ """
327
+ )
328
  with gradio.Row():
329
  with gradio.Column():
330
  base_model_choice = gradio.Dropdown(
 
355
  with gradio.Accordion("Image Annotation Documentation", open=False):
356
  gradio.Markdown(
357
  """
358
+ ### πŸ–ΌοΈ Image Annotation Documentation
359
+
360
  Image annotation allows you to mark specific regions of an image with labels.
361
+ In this app, you can annotate an image by drawing bounding boxes and/or making points on the image.
362
  The labels can be either '+' or '-'.
363
+
364
+ **πŸ“ How to Annotate an Image:**
365
+ - Bounding Box: Click and drag to draw a box around the desired region.
366
+ - Positive or Negative Points: Draw a small box (note that the center point will be used for the annotation) and add either "+" or "-" as the label respectively.
367
+
368
+ **🎨 Generating Masks:**
369
+ - Once you have annotated the image, click the 'Generate Mask' button to generate a mask based on the annotations.
370
+ - The mask can be either a binary mask or a segmented mask, depending on the selected output mode.
371
+ - You can switch between the output modes using the radio buttons.
372
+ - If you make any changes to the annotations or the output mode, you need to regenerate the mask by clicking the button again.
373
+
374
+ **βš™οΈ Advanced Options:**
375
+ - The advanced options allow you to adjust the SAM mask threshold, maximum hole area, and maximum sprinkle area.
376
+ - These options control the sensitivity and accuracy of the segmentation process.
377
+ - Experiment with different settings to achieve the desired results.
378
+ """
379
  )
380
  image_input = gradio_image_annotation.image_annotator(
381
  example_image_annotation
 
453
  with gradio.Accordion("Auto Annotation Documentation", open=False):
454
  gradio.Markdown(
455
  """
456
+ ### πŸ–ΌοΈ Auto Annotation Documentation
457
+
458
+ Auto annotation allows you to automatically generate masks for an image based on advanced parameters.
459
+ In this app, you can configure various settings to control the mask generation process.
460
+
461
+ **πŸ“ How to Use Auto Annotation:**
462
+ - Upload or select an image.
463
+ - Adjust the advanced options to fine-tune the mask generation process.
464
+ - Click the 'Generate Auto Mask' button to generate masks automatically.
465
+
466
+ **βš™οΈ Advanced Options:**
467
+ - **Points Per Side:** Number of points to sample per side of the image.
468
+ - **Points Per Batch:** Number of points to process in each batch.
469
+ - **Pred IOU Threshold:** Threshold for the predicted Intersection over Union (IOU) score.
470
+ - **Stability Score Threshold:** Threshold for the stability score.
471
+ - **Stability Score Offset:** Offset for the stability score.
472
+ - **Mask Threshold:** Threshold for the mask generation.
473
+ - **Box NMS Threshold:** Non-Maximum Suppression (NMS) threshold for boxes.
474
+ - **Crop N Layers:** Number of layers to crop.
475
+ - **Crop NMS Threshold:** NMS threshold for crops.
476
+ - **Crop Overlay Ratio:** Overlay ratio for crops.
477
+ - **Crop N Points Downscale Factor:** Downscale factor for the number of points in crops.
478
+ - **Min Mask Region Area:** Minimum area for mask regions.
479
+ - **Use M2M:** Whether to use M2M (Mask-to-Mask) refinement.
480
+ - **Multi Mask Output:** Whether to generate multiple masks.
481
+
482
+ **🎨 Generating Masks:**
483
+ - Once you have configured the advanced options, click the 'Generate Auto Mask' button.
484
+ - The masks will be generated automatically based on the selected parameters.
485
+ - You can view the generated masks and adjust the settings if needed.
486
+ """
487
  )
488
  auto_input = gradio.Image("assets/cars.jpg")
489
  with gradio.Accordion("Advanced Options", open=False):