Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import evaluate | |
import datasets | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great ML task and is crafted with a lot of care. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
accuracy: description of the first score, | |
another_score: description of the second score, | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> my_new_module = evaluate.load("my_new_module") | |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) | |
>>> print(results) | |
{'accuracy': 1.0} | |
""" | |
# TODO: Define external resources urls if needed | |
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" | |
class multiclass_fpr_weighted(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
'predictions': datasets.Value('int64'), | |
'references': datasets.Value('int64'), | |
}), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
# TODO: Download external resources if needed | |
pass | |
def _compute(self, predictions, references): | |
from collections import defaultdict | |
"""Returns the scores""" | |
# TODO: Compute the different scores of the module | |
# Count false positives, true negatives, and false instance counts for each class | |
fp_counts = defaultdict(int) | |
tn_counts = defaultdict(int) | |
false_counts = defaultdict(int) | |
for true_label, pred_label in zip(references, predictions): | |
if true_label != pred_label: | |
fp_counts[pred_label] += 1 | |
false_counts[pred_label] += 1 | |
else: | |
for class_label in set(references) - {true_label}: | |
tn_counts[class_label] += 1 | |
false_counts[class_label] += 1 | |
# Calculate class-wise false positive rate | |
class_fpr = {} | |
total_weight = sum(false_counts.values()) | |
weighted_sum = 0.0 | |
for class_label in set(references): | |
fp = fp_counts[class_label] | |
tn = tn_counts[class_label] | |
false_instances = false_counts[class_label] | |
fpr = fp / (fp + tn) if (fp + tn) > 0 else 0 | |
class_fpr[class_label] = fpr | |
weighted_sum += fpr * false_instances | |
weighted_avg_fpr = weighted_sum / total_weight if total_weight > 0 else 0 | |
return { | |
"weighted_fpr": weighted_avg_fpr, | |
} |