Spaces:
Runtime error
Runtime error
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +17 -0
- HPS_v2.pt +3 -0
- LICENSE +201 -0
- README.md +1 -5
- app.py +83 -0
- assets/hps_banner.png +3 -0
- assets/overview.png +3 -0
- configs/HPSv2.sh +32 -0
- configs/controller.sh +59 -0
- evaluate.py +220 -0
- requirements.txt +18 -0
- score.py +56 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-38.pyc +0 -0
- src/open_clip/__init__.py +14 -0
- src/open_clip/__pycache__/__init__.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/coca_model.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/constants.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/factory.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/hf_configs.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/hf_model.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/loss.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/model.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/modified_resnet.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/openai.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/pretrained.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/push_to_hf_hub.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/timm_model.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/tokenizer.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/transform.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/transformer.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/utils.cpython-38.pyc +0 -0
- src/open_clip/__pycache__/version.cpython-38.pyc +0 -0
- src/open_clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- src/open_clip/coca_model.py +458 -0
- src/open_clip/constants.py +2 -0
- src/open_clip/factory.py +433 -0
- src/open_clip/generation_utils.py +0 -0
- src/open_clip/hf_configs.py +45 -0
- src/open_clip/hf_model.py +176 -0
- src/open_clip/loss.py +270 -0
- src/open_clip/model.py +461 -0
- src/open_clip/model_configs/RN101-quickgelu.json +22 -0
- src/open_clip/model_configs/RN101.json +21 -0
- src/open_clip/model_configs/RN50-quickgelu.json +22 -0
- src/open_clip/model_configs/RN50.json +21 -0
- src/open_clip/model_configs/RN50x16.json +21 -0
- src/open_clip/model_configs/RN50x4.json +21 -0
- src/open_clip/model_configs/RN50x64.json +21 -0
- src/open_clip/model_configs/ViT-B-16-plus-240.json +16 -0
.gitattributes
CHANGED
@@ -33,3 +33,20 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/hps_banner.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/overview.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
src/open_clip/bpe_simple_vocab_16e6.txt.gz filter=lfs diff=lfs merge=lfs -text
|
39 |
+
HPS_v2.pt filter=lfs diff=lfs merge=lfs -text
|
40 |
+
tests/*.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
tests/docs/clip_loss.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
tests/docs/clip_val_loss.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
tests/docs/clip_zeroshot.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
tests/docs/laion2b_clip_zeroshot_b32.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
tests/docs/laion_clip_zeroshot_l14.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
tests/docs/CLIP.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
tests/docs/clip_recall.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
tests/docs/effective_robustness.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
tests/docs/laion_clip_zeroshot_b16_plus_240.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
tests/docs/laion_clip_zeroshot_b16.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
tests/docs/laion_clip_zeroshot.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
tests/docs/scaling.png filter=lfs diff=lfs merge=lfs -text
|
HPS_v2.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9defdb2ba952d35ec1cb3334554bd4033e415d1397d742a9946d2ac884ed53a1
|
3 |
+
size 8063374362
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
---
|
2 |
title: HPSv2
|
3 |
emoji: 🚀
|
4 |
colorFrom: purple
|
@@ -7,7 +6,4 @@ sdk: gradio
|
|
7 |
sdk_version: 3.37.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
1 |
title: HPSv2
|
2 |
emoji: 🚀
|
3 |
colorFrom: purple
|
|
|
6 |
sdk_version: 3.37.0
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
+
license: apache-2.0
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from src.open_clip import create_model_and_transforms, get_tokenizer
|
5 |
+
import warnings
|
6 |
+
import argparse
|
7 |
+
|
8 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
9 |
+
|
10 |
+
# Create an argument parser
|
11 |
+
parser = argparse.ArgumentParser()
|
12 |
+
parser.add_argument('--checkpoint', type=str, default='HPS_v2.pt', help='Path to the model checkpoint')
|
13 |
+
|
14 |
+
args = parser.parse_args()
|
15 |
+
|
16 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
17 |
+
model, preprocess_train, preprocess_val = create_model_and_transforms(
|
18 |
+
'ViT-H-14',
|
19 |
+
'laion2B-s32B-b79K',
|
20 |
+
precision='amp',
|
21 |
+
device=device,
|
22 |
+
jit=False,
|
23 |
+
force_quick_gelu=False,
|
24 |
+
force_custom_text=False,
|
25 |
+
force_patch_dropout=False,
|
26 |
+
force_image_size=None,
|
27 |
+
pretrained_image=False,
|
28 |
+
image_mean=None,
|
29 |
+
image_std=None,
|
30 |
+
light_augmentation=True,
|
31 |
+
aug_cfg={},
|
32 |
+
output_dict=True,
|
33 |
+
with_score_predictor=False,
|
34 |
+
with_region_predictor=False
|
35 |
+
)
|
36 |
+
|
37 |
+
checkpoint = torch.load(args.checkpoint)
|
38 |
+
model.load_state_dict(checkpoint['state_dict'])
|
39 |
+
tokenizer = get_tokenizer('ViT-H-14')
|
40 |
+
model.eval()
|
41 |
+
|
42 |
+
intro = """
|
43 |
+
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
|
44 |
+
HPS v2
|
45 |
+
</h1>
|
46 |
+
<h3 style="font-weight: 600; text-align: center;">
|
47 |
+
evaluating human preference for generated images
|
48 |
+
</h3>
|
49 |
+
<h4 style="text-align: center; margin-bottom: 7px;">
|
50 |
+
<a href="https://github.com/tgxs002/HPSv2" style="text-decoration: underline;" target="_blank">GitHub</a> | <a href="https://arxiv.org/abs/2306.09341" style="text-decoration: underline;" target="_blank">ArXiv</a>
|
51 |
+
</h4>
|
52 |
+
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
|
53 |
+
<p/>"""
|
54 |
+
|
55 |
+
def inference(image, prompt):
|
56 |
+
# Load your image and prompt
|
57 |
+
with torch.no_grad():
|
58 |
+
|
59 |
+
# Process the image
|
60 |
+
image = preprocess_val(image).unsqueeze(0).to(device=device, non_blocking=True)
|
61 |
+
# Process the prompt
|
62 |
+
text = tokenizer([prompt]).to(device=device, non_blocking=True)
|
63 |
+
# Calculate the HPS
|
64 |
+
with torch.cuda.amp.autocast():
|
65 |
+
outputs = model(image, text)
|
66 |
+
image_features, text_features = outputs["image_features"], outputs["text_features"]
|
67 |
+
logits_per_image = image_features @ text_features.T
|
68 |
+
|
69 |
+
hps_score = torch.diagonal(logits_per_image).cpu().numpy()
|
70 |
+
output = 'HPSv2 score: ' + str(hps_score[0])
|
71 |
+
return output
|
72 |
+
|
73 |
+
with gr.Blocks(css="style.css") as demo:
|
74 |
+
gr.HTML(intro)
|
75 |
+
with gr.Column():
|
76 |
+
image = gr.Image(label="Image", type="pil")
|
77 |
+
prompt = gr.Textbox(lines=1, label="Prompt")
|
78 |
+
button = gr.Button("Compute HPS v2")
|
79 |
+
score = gr.Textbox(label="output", lines=1, interactive=False, elem_id="output")
|
80 |
+
button.click(inference, inputs=[image, prompt], outputs=score)
|
81 |
+
|
82 |
+
demo.queue(concurrency_count=1)
|
83 |
+
demo.launch()
|
assets/hps_banner.png
ADDED
Git LFS Details
|
assets/overview.png
ADDED
Git LFS Details
|
configs/HPSv2.sh
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name=$0
|
2 |
+
. configs/controller.sh
|
3 |
+
|
4 |
+
args=" \
|
5 |
+
--zeroshot-frequency 1 \
|
6 |
+
--report-to tensorboard \
|
7 |
+
--train-data $local_ranking_path/train.json $local_benchmark_path/annotations.json \
|
8 |
+
--val-data $local_ranking_path/test.json $local_benchmark_path/annotations.json \
|
9 |
+
--train-folder $local_ranking_path/train $local_benchmark_path \
|
10 |
+
--val-folder $local_ranking_path/test $local_benchmark_path \
|
11 |
+
--warmup 500 \
|
12 |
+
--lr 0.0000033 \
|
13 |
+
--wd 0.35 \
|
14 |
+
--workers 4 4 \
|
15 |
+
--batch-size 16 16 \
|
16 |
+
--pretrained laion2B-s32B-b79K \
|
17 |
+
--dataset-type HPD ranking \
|
18 |
+
--ignore-in-train 0 1 \
|
19 |
+
--ignore-in-val 1 0 \
|
20 |
+
--train-data-sample-ratio 1.0 0 \
|
21 |
+
--model ViT-H-14 \
|
22 |
+
--lock-text \
|
23 |
+
--lock-image \
|
24 |
+
--lock-text-unlocked-layers 11 \
|
25 |
+
--lock-image-unlocked-groups 20 \
|
26 |
+
--logs none \
|
27 |
+
--light-augmentation \
|
28 |
+
--exp-name $name \
|
29 |
+
--iterations 100 \
|
30 |
+
"
|
31 |
+
|
32 |
+
eval "$header$args$extra_args 2>&1 | tee -a $work_dir/exp_$now.txt"
|
configs/controller.sh
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exp=${1:-'test'}
|
2 |
+
gpu=${2:-'1'}
|
3 |
+
type=${3:-'local'} # choose slurm if you are running on a cluster with slurm scheduler
|
4 |
+
|
5 |
+
if [ "$type" == 'local' ]; then
|
6 |
+
extra_args=${@:4:99}
|
7 |
+
else
|
8 |
+
quotatype=${4:-'auto'} # for slurm
|
9 |
+
partition=${5:-'1'} # for slurm
|
10 |
+
extra_args=${@:6:99}
|
11 |
+
quotatype=spot
|
12 |
+
partition=YOUR_PARTITION
|
13 |
+
extra_args=${@:4:99}
|
14 |
+
fi
|
15 |
+
|
16 |
+
name=${name/#configs/logs}
|
17 |
+
name=${name//.sh//$exp}
|
18 |
+
work_dir="${name}"
|
19 |
+
now=$(date +"%Y%m%d_%H%M%S")
|
20 |
+
mkdir -p $work_dir
|
21 |
+
|
22 |
+
ncpu='4'
|
23 |
+
|
24 |
+
if [ "$quotatype" == 'reserved_normal' ]; then
|
25 |
+
quotatype='reserved --phx-priority=${gpu} normal'
|
26 |
+
fi
|
27 |
+
|
28 |
+
if [ "$type" == 'local' ]; then
|
29 |
+
|
30 |
+
|
31 |
+
ava_path=/mnt/afs/xswu/datasets/AVA/images
|
32 |
+
local_data_path=/mnt/afs/xswu/datasets/preference
|
33 |
+
local_ava_path=/mnt/afs/xswu/datasets/AVA
|
34 |
+
local_simulacra_path=/mnt/afs/xswu/datasets/simulacra
|
35 |
+
local_region_path=/mnt/afs/xswu/datasets/regional_dataset
|
36 |
+
local_ranking_path=/mnt/afs/xswu/datasets/HPDv2
|
37 |
+
local_benchmark_path=/mnt/afs/xswu/datasets/benchmark
|
38 |
+
local_ImageReward_path=/mnt/afs/xswu/datasets/ImageReward
|
39 |
+
local_pap_path=/mnt/afs/xswu/datasets/PAP
|
40 |
+
|
41 |
+
header="torchrun --nproc_per_node=${gpu} --nnodes=1 --max_restarts=3 -m src.training.main "
|
42 |
+
|
43 |
+
else
|
44 |
+
|
45 |
+
data_path=s3://preference_images/
|
46 |
+
ava_path=s3://AVA/
|
47 |
+
simulacra_path=s3://simulacra/
|
48 |
+
region_path=/mnt/lustre/wuxiaoshi1.vendor/datasets/regional_dataset/
|
49 |
+
local_data_path=/mnt/lustre/wuxiaoshi1.vendor/datasets/human_preference
|
50 |
+
local_ava_path=/mnt/lustre/wuxiaoshi1.vendor/datasets/AVA
|
51 |
+
local_simulacra_path=/mnt/lustre/wuxiaoshi1.vendor/datasets/simulacra
|
52 |
+
local_region_path=/mnt/lustre/wuxiaoshi1.vendor/datasets/regional_dataset
|
53 |
+
local_ranking_path=/mnt/lustre/wuxiaoshi1.vendor/datasets/ranking_dataset
|
54 |
+
local_benchmark_path=/mnt/lustre/wuxiaoshi1.vendor/datasets/benchmark
|
55 |
+
local_ImageReward_path=/mnt/lustre/wuxiaoshi1.vendor/datasets/ImageReward
|
56 |
+
header="srun --async --partition=$partition -n${gpu} --mpi=pmi2 --gres=gpu:$gpu --ntasks-per-node=${gpu} --quotatype=$quotatype \
|
57 |
+
--job-name=$exp --cpus-per-task=$ncpu --kill-on-bad-exit=1 -o local.out python -m src.training.main "
|
58 |
+
|
59 |
+
fi
|
evaluate.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from cProfile import label
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from argparse import ArgumentParser
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch.utils.data import Dataset, DataLoader
|
11 |
+
|
12 |
+
from src.open_clip import create_model_and_transforms, get_tokenizer
|
13 |
+
from src.training.train import calc_ImageReward, inversion_score
|
14 |
+
from src.training.data import ImageRewardDataset, collate_rank, RankingDataset
|
15 |
+
|
16 |
+
|
17 |
+
parser = ArgumentParser()
|
18 |
+
parser.add_argument('--data-type', type=str, choices=['benchmark', 'test', 'ImageReward', 'drawbench'])
|
19 |
+
parser.add_argument('--data-path', type=str, help='path to dataset')
|
20 |
+
parser.add_argument('--image-path', type=str, help='path to image files')
|
21 |
+
parser.add_argument('--checkpoint', type=str, help='path to checkpoint')
|
22 |
+
parser.add_argument('--batch-size', type=int, default=20)
|
23 |
+
args = parser.parse_args()
|
24 |
+
|
25 |
+
batch_size = args.batch_size
|
26 |
+
args.model = "ViT-H-14"
|
27 |
+
args.precision = 'amp'
|
28 |
+
print(args.model)
|
29 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
30 |
+
model, preprocess_train, preprocess_val = create_model_and_transforms(
|
31 |
+
args.model,
|
32 |
+
'laion2B-s32B-b79K',
|
33 |
+
precision=args.precision,
|
34 |
+
device=device,
|
35 |
+
jit=False,
|
36 |
+
force_quick_gelu=False,
|
37 |
+
force_custom_text=False,
|
38 |
+
force_patch_dropout=False,
|
39 |
+
force_image_size=None,
|
40 |
+
pretrained_image=False,
|
41 |
+
image_mean=None,
|
42 |
+
image_std=None,
|
43 |
+
light_augmentation=True,
|
44 |
+
aug_cfg={},
|
45 |
+
output_dict=True,
|
46 |
+
with_score_predictor=False,
|
47 |
+
with_region_predictor=False
|
48 |
+
)
|
49 |
+
|
50 |
+
checkpoint = torch.load(args.checkpoint)
|
51 |
+
model.load_state_dict(checkpoint['state_dict'])
|
52 |
+
tokenizer = get_tokenizer(args.model)
|
53 |
+
model.eval()
|
54 |
+
|
55 |
+
class BenchmarkDataset(Dataset):
|
56 |
+
def __init__(self, meta_file, image_folder,transforms, tokenizer):
|
57 |
+
self.transforms = transforms
|
58 |
+
self.image_folder = image_folder
|
59 |
+
self.tokenizer = tokenizer
|
60 |
+
self.open_image = Image.open
|
61 |
+
with open(meta_file, 'r') as f:
|
62 |
+
self.annotations = json.load(f)
|
63 |
+
|
64 |
+
def __len__(self):
|
65 |
+
return len(self.annotations)
|
66 |
+
|
67 |
+
def __getitem__(self, idx):
|
68 |
+
try:
|
69 |
+
img_path = os.path.join(self.image_folder, f'{idx:05d}.jpg')
|
70 |
+
images = self.transforms(self.open_image(os.path.join(img_path)))
|
71 |
+
caption = self.tokenizer(self.annotations[idx])
|
72 |
+
return images, caption
|
73 |
+
except:
|
74 |
+
print('file not exist')
|
75 |
+
return self.__getitem__((idx + 1) % len(self))
|
76 |
+
|
77 |
+
def evaluate_IR(data_path, image_folder, model):
|
78 |
+
meta_file = data_path + '/ImageReward_test.json'
|
79 |
+
dataset = ImageRewardDataset(meta_file, image_folder, preprocess_val, tokenizer)
|
80 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=collate_rank)
|
81 |
+
|
82 |
+
score = 0
|
83 |
+
total = len(dataset)
|
84 |
+
with torch.no_grad():
|
85 |
+
for batch in tqdm(dataloader):
|
86 |
+
images, num_images, labels, texts = batch
|
87 |
+
images = images.to(device=device, non_blocking=True)
|
88 |
+
texts = texts.to(device=device, non_blocking=True)
|
89 |
+
num_images = num_images.to(device=device, non_blocking=True)
|
90 |
+
labels = labels.to(device=device, non_blocking=True)
|
91 |
+
|
92 |
+
with torch.cuda.amp.autocast():
|
93 |
+
outputs = model(images, texts)
|
94 |
+
image_features, text_features, logit_scale = outputs["image_features"], outputs["text_features"], outputs["logit_scale"]
|
95 |
+
logits_per_image = logit_scale * image_features @ text_features.T
|
96 |
+
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
|
97 |
+
|
98 |
+
predicted = [torch.argsort(-k) for k in paired_logits_list]
|
99 |
+
hps_ranking = [[predicted[i].tolist().index(j) for j in range(n)] for i,n in enumerate(num_images)]
|
100 |
+
labels = [label for label in labels.split(num_images.tolist())]
|
101 |
+
score +=sum([calc_ImageReward(paired_logits_list[i].tolist(), labels[i]) for i in range(len(hps_ranking))])
|
102 |
+
print('ImageReward:', score/total)
|
103 |
+
|
104 |
+
def evaluate_rank(data_path, image_folder, model):
|
105 |
+
meta_file = data_path + '/test.json'
|
106 |
+
dataset = RankingDataset(meta_file, image_folder, preprocess_val, tokenizer)
|
107 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=collate_rank)
|
108 |
+
|
109 |
+
score = 0
|
110 |
+
total = len(dataset)
|
111 |
+
all_rankings = []
|
112 |
+
with torch.no_grad():
|
113 |
+
for batch in tqdm(dataloader):
|
114 |
+
images, num_images, labels, texts = batch
|
115 |
+
images = images.to(device=device, non_blocking=True)
|
116 |
+
texts = texts.to(device=device, non_blocking=True)
|
117 |
+
num_images = num_images.to(device=device, non_blocking=True)
|
118 |
+
labels = labels.to(device=device, non_blocking=True)
|
119 |
+
|
120 |
+
with torch.cuda.amp.autocast():
|
121 |
+
outputs = model(images, texts)
|
122 |
+
image_features, text_features, logit_scale = outputs["image_features"], outputs["text_features"], outputs["logit_scale"]
|
123 |
+
logits_per_image = logit_scale * image_features @ text_features.T
|
124 |
+
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
|
125 |
+
|
126 |
+
predicted = [torch.argsort(-k) for k in paired_logits_list]
|
127 |
+
hps_ranking = [[predicted[i].tolist().index(j) for j in range(n)] for i,n in enumerate(num_images)]
|
128 |
+
labels = [label for label in labels.split(num_images.tolist())]
|
129 |
+
all_rankings.extend(hps_ranking)
|
130 |
+
score += sum([inversion_score(hps_ranking[i], labels[i]) for i in range(len(hps_ranking))])
|
131 |
+
print('ranking_acc:', score/total)
|
132 |
+
with open('logs/hps_rank.json', 'w') as f:
|
133 |
+
json.dump(all_rankings, f)
|
134 |
+
|
135 |
+
def collate_eval(batch):
|
136 |
+
images = torch.stack([sample[0] for sample in batch])
|
137 |
+
captions = torch.cat([sample[1] for sample in batch])
|
138 |
+
return images, captions
|
139 |
+
|
140 |
+
|
141 |
+
def evaluate_benchmark(data_path, root_dir, model):
|
142 |
+
meta_dir = data_path
|
143 |
+
model_list = os.listdir(root_dir)
|
144 |
+
style_list = os.listdir(os.path.join(root_dir, model_list[0]))
|
145 |
+
|
146 |
+
score = {}
|
147 |
+
for model_id in model_list:
|
148 |
+
score[model_id]={}
|
149 |
+
for style in style_list:
|
150 |
+
# score[model_id][style] = [0] * 10
|
151 |
+
score[model_id][style] = []
|
152 |
+
image_folder = os.path.join(root_dir, model_id, style)
|
153 |
+
meta_file = os.path.join(meta_dir, f'{style}.json')
|
154 |
+
dataset = BenchmarkDataset(meta_file, image_folder, preprocess_val, tokenizer)
|
155 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_eval)
|
156 |
+
|
157 |
+
with torch.no_grad():
|
158 |
+
for i, batch in enumerate(dataloader):
|
159 |
+
images, texts = batch
|
160 |
+
images = images.to(device=device, non_blocking=True)
|
161 |
+
texts = texts.to(device=device, non_blocking=True)
|
162 |
+
|
163 |
+
with torch.cuda.amp.autocast():
|
164 |
+
outputs = model(images, texts)
|
165 |
+
image_features, text_features = outputs["image_features"], outputs["text_features"]
|
166 |
+
logits_per_image = image_features @ text_features.T
|
167 |
+
# score[model_id][style][i] = torch.sum(torch.diagonal(logits_per_image)).cpu().item() / 80
|
168 |
+
score[model_id][style].extend(torch.diagonal(logits_per_image).cpu().tolist())
|
169 |
+
print('-----------benchmark score ---------------- ')
|
170 |
+
for model_id, data in score.items():
|
171 |
+
for style , res in data.items():
|
172 |
+
avg_score = [np.mean(res[i:i+80]) for i in range(0, 800, 80)]
|
173 |
+
print(model_id, '\t', style, '\t', np.mean(avg_score), '\t', np.std(avg_score))
|
174 |
+
|
175 |
+
|
176 |
+
def evaluate_benchmark_DB(data_path, root_dir, model):
|
177 |
+
meta_file = data_path + '/drawbench.json'
|
178 |
+
model_list = os.listdir(root_dir)
|
179 |
+
|
180 |
+
|
181 |
+
score = {}
|
182 |
+
for model_id in model_list:
|
183 |
+
image_folder = os.path.join(root_dir, model_id)
|
184 |
+
dataset = BenchmarkDataset(meta_file, image_folder, preprocess_val, tokenizer)
|
185 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=collate_eval)
|
186 |
+
score[model_id] = 0
|
187 |
+
with torch.no_grad():
|
188 |
+
for batch in tqdm(dataloader):
|
189 |
+
images, texts = batch
|
190 |
+
images = images.to(device=device, non_blocking=True)
|
191 |
+
texts = texts.to(device=device, non_blocking=True)
|
192 |
+
|
193 |
+
with torch.cuda.amp.autocast():
|
194 |
+
outputs = model(images, texts)
|
195 |
+
image_features, text_features = outputs["image_features"], outputs["text_features"]
|
196 |
+
logits_per_image = image_features @ text_features.T
|
197 |
+
diag = torch.diagonal(logits_per_image)
|
198 |
+
score[model_id] += torch.sum(diag).cpu().item()
|
199 |
+
score[model_id] = score[model_id] / len(dataset)
|
200 |
+
# with open('logs/benchmark_score_DB.json', 'w') as f:
|
201 |
+
# json.dump(score, f)
|
202 |
+
print('-----------drawbench score ---------------- ')
|
203 |
+
for model, data in score.items():
|
204 |
+
print(model, '\t', '\t', np.mean(data))
|
205 |
+
|
206 |
+
|
207 |
+
if args.data_type == 'ImageReward':
|
208 |
+
evaluate_IR(args.data_path, args.image_path, model)
|
209 |
+
elif args.data_type == 'test':
|
210 |
+
evaluate_rank(args.data_path, args.image_path, model)
|
211 |
+
elif args.data_type == 'benchmark':
|
212 |
+
evaluate_benchmark(args.data_path, args.image_path, model)
|
213 |
+
elif args.data_type == 'drawbench':
|
214 |
+
evaluate_benchmark_DB(args.data_path, args.image_path, model)
|
215 |
+
else:
|
216 |
+
raise NotImplementedError
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.9.0
|
2 |
+
torchvision
|
3 |
+
regex
|
4 |
+
ftfy
|
5 |
+
einops
|
6 |
+
pandas
|
7 |
+
braceexpand
|
8 |
+
fsspec
|
9 |
+
tqdm
|
10 |
+
huggingface_hub
|
11 |
+
sentencepiece
|
12 |
+
protobuf<4
|
13 |
+
timm
|
14 |
+
transformers
|
15 |
+
webdataset
|
16 |
+
pyarrow
|
17 |
+
pytest-split==0.8.0
|
18 |
+
pytest==7.2.0
|
score.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
from src.open_clip import create_model_and_transforms, get_tokenizer
|
4 |
+
import warnings
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
8 |
+
|
9 |
+
# Create an argument parser
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument('--image_path', type=str, required=True, help='Path to the input image')
|
12 |
+
parser.add_argument('--prompt', type=str, required=True, help='Text prompt')
|
13 |
+
parser.add_argument('--checkpoint', type=str, default='../HPSv2.pt', help='Path to the model checkpoint')
|
14 |
+
|
15 |
+
args = parser.parse_args()
|
16 |
+
|
17 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
+
model, preprocess_train, preprocess_val = create_model_and_transforms(
|
19 |
+
'ViT-H-14',
|
20 |
+
'laion2B-s32B-b79K',
|
21 |
+
precision='amp',
|
22 |
+
device=device,
|
23 |
+
jit=False,
|
24 |
+
force_quick_gelu=False,
|
25 |
+
force_custom_text=False,
|
26 |
+
force_patch_dropout=False,
|
27 |
+
force_image_size=None,
|
28 |
+
pretrained_image=False,
|
29 |
+
image_mean=None,
|
30 |
+
image_std=None,
|
31 |
+
light_augmentation=True,
|
32 |
+
aug_cfg={},
|
33 |
+
output_dict=True,
|
34 |
+
with_score_predictor=False,
|
35 |
+
with_region_predictor=False
|
36 |
+
)
|
37 |
+
|
38 |
+
checkpoint = torch.load(args.checkpoint)
|
39 |
+
model.load_state_dict(checkpoint['state_dict'])
|
40 |
+
tokenizer = get_tokenizer('ViT-H-14')
|
41 |
+
model.eval()
|
42 |
+
|
43 |
+
# Load your image and prompt
|
44 |
+
with torch.no_grad():
|
45 |
+
# Process the image
|
46 |
+
image = preprocess_val(Image.open(args.image_path)).unsqueeze(0).to(device=device, non_blocking=True)
|
47 |
+
# Process the prompt
|
48 |
+
text = tokenizer([args.prompt]).to(device=device, non_blocking=True)
|
49 |
+
# Calculate the HPS
|
50 |
+
with torch.cuda.amp.autocast():
|
51 |
+
outputs = model(image, text)
|
52 |
+
image_features, text_features = outputs["image_features"], outputs["text_features"]
|
53 |
+
logits_per_image = image_features @ text_features.T
|
54 |
+
|
55 |
+
hps_score = torch.diagonal(logits_per_image).cpu().numpy()
|
56 |
+
print('HPSv2 score:', hps_score[0])
|
src/__init__.py
ADDED
File without changes
|
src/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (170 Bytes). View file
|
|
src/open_clip/__init__.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .coca_model import CoCa
|
2 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
3 |
+
from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_loss
|
4 |
+
from .factory import list_models, add_model_config, get_model_config, load_checkpoint
|
5 |
+
from .loss import ClipLoss, DistillClipLoss, CoCaLoss
|
6 |
+
from .model import CLIP, CustomTextCLIP, CLIPTextCfg, CLIPVisionCfg, \
|
7 |
+
convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype
|
8 |
+
from .openai import load_openai_model, list_openai_models
|
9 |
+
from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model, \
|
10 |
+
get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
|
11 |
+
from .push_to_hf_hub import push_pretrained_to_hf_hub, push_to_hf_hub
|
12 |
+
from .tokenizer import SimpleTokenizer, tokenize, decode
|
13 |
+
from .transform import image_transform, AugmentationCfg
|
14 |
+
from .utils import freeze_batch_norm_2d
|
src/open_clip/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (1.53 kB). View file
|
|
src/open_clip/__pycache__/coca_model.cpython-38.pyc
ADDED
Binary file (9.72 kB). View file
|
|
src/open_clip/__pycache__/constants.cpython-38.pyc
ADDED
Binary file (287 Bytes). View file
|
|
src/open_clip/__pycache__/factory.cpython-38.pyc
ADDED
Binary file (10.2 kB). View file
|
|
src/open_clip/__pycache__/hf_configs.cpython-38.pyc
ADDED
Binary file (638 Bytes). View file
|
|
src/open_clip/__pycache__/hf_model.cpython-38.pyc
ADDED
Binary file (5.91 kB). View file
|
|
src/open_clip/__pycache__/loss.cpython-38.pyc
ADDED
Binary file (7.47 kB). View file
|
|
src/open_clip/__pycache__/model.cpython-38.pyc
ADDED
Binary file (13.7 kB). View file
|
|
src/open_clip/__pycache__/modified_resnet.cpython-38.pyc
ADDED
Binary file (6.32 kB). View file
|
|
src/open_clip/__pycache__/openai.cpython-38.pyc
ADDED
Binary file (4.78 kB). View file
|
|
src/open_clip/__pycache__/pretrained.cpython-38.pyc
ADDED
Binary file (11.2 kB). View file
|
|
src/open_clip/__pycache__/push_to_hf_hub.cpython-38.pyc
ADDED
Binary file (5.26 kB). View file
|
|
src/open_clip/__pycache__/timm_model.cpython-38.pyc
ADDED
Binary file (4.02 kB). View file
|
|
src/open_clip/__pycache__/tokenizer.cpython-38.pyc
ADDED
Binary file (8.79 kB). View file
|
|
src/open_clip/__pycache__/transform.cpython-38.pyc
ADDED
Binary file (4.92 kB). View file
|
|
src/open_clip/__pycache__/transformer.cpython-38.pyc
ADDED
Binary file (20.3 kB). View file
|
|
src/open_clip/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (2.27 kB). View file
|
|
src/open_clip/__pycache__/version.cpython-38.pyc
ADDED
Binary file (201 Bytes). View file
|
|
src/open_clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
src/open_clip/coca_model.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
import numpy as np
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
from .transformer import (
|
10 |
+
LayerNormFp32,
|
11 |
+
LayerNorm,
|
12 |
+
QuickGELU,
|
13 |
+
MultimodalTransformer,
|
14 |
+
)
|
15 |
+
from .model import CLIPTextCfg, CLIPVisionCfg, _build_vision_tower, _build_text_tower
|
16 |
+
|
17 |
+
try:
|
18 |
+
from transformers import (
|
19 |
+
BeamSearchScorer,
|
20 |
+
LogitsProcessorList,
|
21 |
+
TopPLogitsWarper,
|
22 |
+
TopKLogitsWarper,
|
23 |
+
RepetitionPenaltyLogitsProcessor,
|
24 |
+
MinLengthLogitsProcessor,
|
25 |
+
MaxLengthCriteria,
|
26 |
+
StoppingCriteriaList
|
27 |
+
)
|
28 |
+
|
29 |
+
GENERATION_TYPES = {
|
30 |
+
"top_k": TopKLogitsWarper,
|
31 |
+
"top_p": TopPLogitsWarper,
|
32 |
+
"beam_search": "beam_search"
|
33 |
+
}
|
34 |
+
_has_transformers = True
|
35 |
+
except ImportError as e:
|
36 |
+
GENERATION_TYPES = {
|
37 |
+
"top_k": None,
|
38 |
+
"top_p": None,
|
39 |
+
"beam_search": "beam_search"
|
40 |
+
}
|
41 |
+
_has_transformers = False
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class MultimodalCfg(CLIPTextCfg):
|
46 |
+
mlp_ratio: int = 4
|
47 |
+
dim_head: int = 64
|
48 |
+
heads: int = 8
|
49 |
+
n_queries: int = 256
|
50 |
+
attn_pooler_heads: int = 8
|
51 |
+
|
52 |
+
|
53 |
+
def _build_text_decoder_tower(
|
54 |
+
embed_dim,
|
55 |
+
multimodal_cfg,
|
56 |
+
quick_gelu: bool = False,
|
57 |
+
cast_dtype: Optional[torch.dtype] = None,
|
58 |
+
):
|
59 |
+
multimodal_cfg = MultimodalCfg(**multimodal_cfg) if isinstance(multimodal_cfg, dict) else multimodal_cfg
|
60 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
61 |
+
norm_layer = (
|
62 |
+
LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
63 |
+
)
|
64 |
+
|
65 |
+
decoder = MultimodalTransformer(
|
66 |
+
context_length=multimodal_cfg.context_length,
|
67 |
+
width=multimodal_cfg.width,
|
68 |
+
heads=multimodal_cfg.heads,
|
69 |
+
layers=multimodal_cfg.layers,
|
70 |
+
ls_init_value=multimodal_cfg.ls_init_value,
|
71 |
+
output_dim=embed_dim,
|
72 |
+
act_layer=act_layer,
|
73 |
+
norm_layer=norm_layer,
|
74 |
+
)
|
75 |
+
|
76 |
+
return decoder
|
77 |
+
|
78 |
+
|
79 |
+
class CoCa(nn.Module):
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
embed_dim,
|
83 |
+
multimodal_cfg: MultimodalCfg,
|
84 |
+
text_cfg: CLIPTextCfg,
|
85 |
+
vision_cfg: CLIPVisionCfg,
|
86 |
+
quick_gelu: bool = False,
|
87 |
+
cast_dtype: Optional[torch.dtype] = None,
|
88 |
+
pad_id: int = 0,
|
89 |
+
):
|
90 |
+
super().__init__()
|
91 |
+
multimodal_cfg = MultimodalCfg(**multimodal_cfg) if isinstance(multimodal_cfg, dict) else multimodal_cfg
|
92 |
+
text_cfg = CLIPTextCfg(**text_cfg) if isinstance(text_cfg, dict) else text_cfg
|
93 |
+
vision_cfg = CLIPVisionCfg(**vision_cfg) if isinstance(vision_cfg, dict) else vision_cfg
|
94 |
+
|
95 |
+
self.text = _build_text_tower(
|
96 |
+
embed_dim=embed_dim,
|
97 |
+
text_cfg=text_cfg,
|
98 |
+
quick_gelu=quick_gelu,
|
99 |
+
cast_dtype=cast_dtype,
|
100 |
+
)
|
101 |
+
|
102 |
+
vocab_size = (
|
103 |
+
text_cfg.vocab_size # for hf models
|
104 |
+
if hasattr(text_cfg, "hf_model_name") and text_cfg.hf_model_name is not None
|
105 |
+
else text_cfg.vocab_size
|
106 |
+
)
|
107 |
+
|
108 |
+
self.visual = _build_vision_tower(
|
109 |
+
embed_dim=embed_dim,
|
110 |
+
vision_cfg=vision_cfg,
|
111 |
+
quick_gelu=quick_gelu,
|
112 |
+
cast_dtype=cast_dtype,
|
113 |
+
)
|
114 |
+
|
115 |
+
self.text_decoder = _build_text_decoder_tower(
|
116 |
+
vocab_size,
|
117 |
+
multimodal_cfg=multimodal_cfg,
|
118 |
+
quick_gelu=quick_gelu,
|
119 |
+
cast_dtype=cast_dtype,
|
120 |
+
)
|
121 |
+
|
122 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
123 |
+
self.pad_id = pad_id
|
124 |
+
|
125 |
+
@torch.jit.ignore
|
126 |
+
def set_grad_checkpointing(self, enable=True):
|
127 |
+
self.visual.set_grad_checkpointing(enable)
|
128 |
+
self.text.set_grad_checkpointing(enable)
|
129 |
+
self.text_decoder.set_grad_checkpointing(enable)
|
130 |
+
|
131 |
+
def _encode_image(self, images, normalize=True):
|
132 |
+
image_latent, tokens_embs = self.visual(images)
|
133 |
+
image_latent = F.normalize(image_latent, dim=-1) if normalize else image_latent
|
134 |
+
return image_latent, tokens_embs
|
135 |
+
|
136 |
+
def _encode_text(self, text, normalize=True, embed_cls=True):
|
137 |
+
text = text[:, :-1] if embed_cls else text # make space for CLS token
|
138 |
+
text_latent, token_emb = self.text(text)
|
139 |
+
text_latent = F.normalize(text_latent, dim=-1) if normalize else text_latent
|
140 |
+
return text_latent, token_emb
|
141 |
+
|
142 |
+
def encode_image(self, images, normalize=True):
|
143 |
+
image_latent, _ = self._encode_image(images, normalize=normalize)
|
144 |
+
return image_latent
|
145 |
+
|
146 |
+
def encode_text(self, text, normalize=True, embed_cls=True):
|
147 |
+
text_latent, _ = self._encode_text(text, normalize=normalize, embed_cls=embed_cls)
|
148 |
+
return text_latent
|
149 |
+
|
150 |
+
def forward(self, image, text, embed_cls=True, image_latent=None, image_embs=None):
|
151 |
+
text_latent, token_embs = self._encode_text(text, embed_cls=embed_cls)
|
152 |
+
if image_latent is None or image_embs is None:
|
153 |
+
image_latent, image_embs = self._encode_image(image)
|
154 |
+
|
155 |
+
# TODO: add assertion to avoid bugs?
|
156 |
+
labels = text[:, -token_embs.shape[1]:]
|
157 |
+
|
158 |
+
logits = self.text_decoder(image_embs, token_embs)
|
159 |
+
return {
|
160 |
+
"image_features": image_latent,
|
161 |
+
"text_features": text_latent,
|
162 |
+
"logits": logits,
|
163 |
+
"labels": labels,
|
164 |
+
"logit_scale": self.logit_scale.exp()
|
165 |
+
}
|
166 |
+
|
167 |
+
def generate(
|
168 |
+
self,
|
169 |
+
image,
|
170 |
+
text=None,
|
171 |
+
seq_len=30,
|
172 |
+
max_seq_len=77,
|
173 |
+
temperature=1.,
|
174 |
+
generation_type="beam_search",
|
175 |
+
top_p=0.1, # keep tokens in the 1 - top_p quantile
|
176 |
+
top_k=1, # keeps the top_k most probable tokens
|
177 |
+
pad_token_id=None,
|
178 |
+
eos_token_id=None,
|
179 |
+
sot_token_id=None,
|
180 |
+
num_beams=6,
|
181 |
+
num_beam_groups=3,
|
182 |
+
min_seq_len=5,
|
183 |
+
stopping_criteria=None,
|
184 |
+
repetition_penalty=1.0,
|
185 |
+
fixed_output_length=False # if True output.shape == (batch_size, seq_len)
|
186 |
+
):
|
187 |
+
# taking many ideas and components from HuggingFace GenerationMixin
|
188 |
+
# https://huggingface.co/docs/transformers/main/en/main_classes/text_generation
|
189 |
+
assert _has_transformers, "Please install transformers for generate functionality. `pip install transformers`."
|
190 |
+
assert seq_len > min_seq_len, "seq_len must be larger than min_seq_len"
|
191 |
+
|
192 |
+
with torch.no_grad():
|
193 |
+
sot_token_id = 49406 if sot_token_id is None else sot_token_id
|
194 |
+
eos_token_id = 49407 if eos_token_id is None else eos_token_id
|
195 |
+
pad_token_id = self.pad_id if pad_token_id is None else pad_token_id
|
196 |
+
logit_processor = LogitsProcessorList(
|
197 |
+
[
|
198 |
+
MinLengthLogitsProcessor(min_seq_len, eos_token_id),
|
199 |
+
RepetitionPenaltyLogitsProcessor(repetition_penalty),
|
200 |
+
]
|
201 |
+
)
|
202 |
+
|
203 |
+
if stopping_criteria is None:
|
204 |
+
stopping_criteria = [MaxLengthCriteria(max_length=seq_len)]
|
205 |
+
|
206 |
+
stopping_criteria = StoppingCriteriaList(
|
207 |
+
stopping_criteria
|
208 |
+
)
|
209 |
+
|
210 |
+
device = image.device
|
211 |
+
|
212 |
+
if generation_type == "beam_search":
|
213 |
+
output = self._generate_beamsearch(
|
214 |
+
image_inputs = image,
|
215 |
+
pad_token_id=pad_token_id,
|
216 |
+
eos_token_id=eos_token_id,
|
217 |
+
sot_token_id=sot_token_id,
|
218 |
+
num_beams=num_beams,
|
219 |
+
num_beam_groups=num_beam_groups,
|
220 |
+
min_seq_len=min_seq_len,
|
221 |
+
stopping_criteria=stopping_criteria,
|
222 |
+
logit_processor=logit_processor,
|
223 |
+
)
|
224 |
+
if fixed_output_length and output.shape[1] < seq_len:
|
225 |
+
return torch.cat(
|
226 |
+
(output, torch.ones(output.shape[0], seq_len-output.shape[1], device=device, dtype=output.dtype) * self.pad_id),
|
227 |
+
dim=1
|
228 |
+
)
|
229 |
+
return output
|
230 |
+
|
231 |
+
elif generation_type == "top_p":
|
232 |
+
logit_warper = GENERATION_TYPES[generation_type](top_p)
|
233 |
+
elif generation_type == "top_k":
|
234 |
+
logit_warper = GENERATION_TYPES[generation_type](top_k)
|
235 |
+
else:
|
236 |
+
raise ValueError(
|
237 |
+
f"generation_type has to be one of "
|
238 |
+
f"{'| ' + ' | '.join(list(GENERATION_TYPES.keys())) + ' |'}."
|
239 |
+
)
|
240 |
+
|
241 |
+
image_latent, image_embs = self._encode_image(image)
|
242 |
+
|
243 |
+
if text is None:
|
244 |
+
text = torch.ones((image.shape[0], 1), device=device, dtype=torch.long) * sot_token_id
|
245 |
+
|
246 |
+
was_training = self.training
|
247 |
+
num_dims = len(text.shape)
|
248 |
+
|
249 |
+
if num_dims == 1:
|
250 |
+
text = text[None, :]
|
251 |
+
|
252 |
+
cur_len = text.shape[1]
|
253 |
+
self.eval()
|
254 |
+
out = text
|
255 |
+
|
256 |
+
while True:
|
257 |
+
x = out[:, -max_seq_len:]
|
258 |
+
cur_len = x.shape[1]
|
259 |
+
logits = self(image, x, image_latent=image_latent, image_embs=image_embs, embed_cls=False)["logits"][:, -1]
|
260 |
+
mask = (out[:, -1] == eos_token_id) | (out[:, -1] == pad_token_id)
|
261 |
+
sample = torch.ones((out.shape[0], 1), device=device, dtype=torch.long) * pad_token_id
|
262 |
+
|
263 |
+
if mask.all():
|
264 |
+
if not fixed_output_length:
|
265 |
+
break
|
266 |
+
else:
|
267 |
+
logits = logits[~mask, :]
|
268 |
+
filtered_logits = logit_processor(x[~mask, :], logits)
|
269 |
+
filtered_logits = logit_warper(x[~mask, :], filtered_logits)
|
270 |
+
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
271 |
+
|
272 |
+
if (cur_len + 1 == seq_len):
|
273 |
+
sample[~mask, :] = torch.ones((sum(~mask), 1), device=device, dtype=torch.long) * eos_token_id
|
274 |
+
else:
|
275 |
+
sample[~mask, :] = torch.multinomial(probs, 1)
|
276 |
+
|
277 |
+
out = torch.cat((out, sample), dim=-1)
|
278 |
+
|
279 |
+
cur_len += 1
|
280 |
+
|
281 |
+
if stopping_criteria(out, None):
|
282 |
+
break
|
283 |
+
|
284 |
+
if num_dims == 1:
|
285 |
+
out = out.squeeze(0)
|
286 |
+
|
287 |
+
self.train(was_training)
|
288 |
+
return out
|
289 |
+
|
290 |
+
def _generate_beamsearch(
|
291 |
+
self,
|
292 |
+
image_inputs,
|
293 |
+
pad_token_id=None,
|
294 |
+
eos_token_id=None,
|
295 |
+
sot_token_id=None,
|
296 |
+
num_beams=6,
|
297 |
+
num_beam_groups=3,
|
298 |
+
min_seq_len=5,
|
299 |
+
stopping_criteria=None,
|
300 |
+
logit_processor=None,
|
301 |
+
logit_warper=None,
|
302 |
+
):
|
303 |
+
device = image_inputs.device
|
304 |
+
batch_size = image_inputs.shape[0]
|
305 |
+
image_inputs = torch.repeat_interleave(image_inputs, num_beams, dim=0)
|
306 |
+
image_latent, image_embs = self._encode_image(image_inputs)
|
307 |
+
|
308 |
+
input_ids = torch.ones((batch_size * num_beams, 1), device=device, dtype=torch.long)
|
309 |
+
input_ids = input_ids * sot_token_id
|
310 |
+
beam_scorer = BeamSearchScorer(
|
311 |
+
batch_size=batch_size,
|
312 |
+
num_beams=num_beams,
|
313 |
+
device=device,
|
314 |
+
num_beam_groups=num_beam_groups,
|
315 |
+
)
|
316 |
+
# instantiate logits processors
|
317 |
+
logits_processor = (
|
318 |
+
LogitsProcessorList([MinLengthLogitsProcessor(min_seq_len, eos_token_id=eos_token_id)])
|
319 |
+
if logit_processor is None
|
320 |
+
else logit_processor
|
321 |
+
)
|
322 |
+
|
323 |
+
batch_size = len(beam_scorer._beam_hyps)
|
324 |
+
num_beams = beam_scorer.num_beams
|
325 |
+
num_beam_groups = beam_scorer.num_beam_groups
|
326 |
+
num_sub_beams = num_beams // num_beam_groups
|
327 |
+
batch_beam_size, cur_len = input_ids.shape
|
328 |
+
beam_indices = None
|
329 |
+
|
330 |
+
if num_beams * batch_size != batch_beam_size:
|
331 |
+
raise ValueError(
|
332 |
+
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
|
333 |
+
)
|
334 |
+
|
335 |
+
beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
|
336 |
+
# initialise score of first beam of each group with 0 and the rest with 1e-9. This ensures that the beams in
|
337 |
+
# the same group don't produce same tokens everytime.
|
338 |
+
beam_scores[:, ::num_sub_beams] = 0
|
339 |
+
beam_scores = beam_scores.view((batch_size * num_beams,))
|
340 |
+
|
341 |
+
while True:
|
342 |
+
|
343 |
+
# predicted tokens in cur_len step
|
344 |
+
current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)
|
345 |
+
|
346 |
+
# indices which will form the beams in the next time step
|
347 |
+
reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)
|
348 |
+
|
349 |
+
# do one decoder step on all beams of all sentences in batch
|
350 |
+
model_inputs = prepare_inputs_for_generation(input_ids=input_ids, image_inputs=image_inputs)
|
351 |
+
outputs = self(
|
352 |
+
model_inputs['images'],
|
353 |
+
model_inputs['text'],
|
354 |
+
embed_cls=False,
|
355 |
+
image_latent=image_latent,
|
356 |
+
image_embs=image_embs
|
357 |
+
)
|
358 |
+
|
359 |
+
for beam_group_idx in range(num_beam_groups):
|
360 |
+
group_start_idx = beam_group_idx * num_sub_beams
|
361 |
+
group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
|
362 |
+
group_size = group_end_idx - group_start_idx
|
363 |
+
|
364 |
+
# indices of beams of current group among all sentences in batch
|
365 |
+
batch_group_indices = []
|
366 |
+
|
367 |
+
for batch_idx in range(batch_size):
|
368 |
+
batch_group_indices.extend(
|
369 |
+
[batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
|
370 |
+
)
|
371 |
+
group_input_ids = input_ids[batch_group_indices]
|
372 |
+
|
373 |
+
# select outputs of beams of currentg group only
|
374 |
+
next_token_logits = outputs['logits'][batch_group_indices, -1, :]
|
375 |
+
vocab_size = next_token_logits.shape[-1]
|
376 |
+
|
377 |
+
next_token_scores_processed = logits_processor(
|
378 |
+
group_input_ids, next_token_logits, current_tokens=current_tokens, beam_group_idx=beam_group_idx
|
379 |
+
)
|
380 |
+
next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1)
|
381 |
+
next_token_scores = next_token_scores.expand_as(next_token_scores_processed)
|
382 |
+
|
383 |
+
# reshape for beam search
|
384 |
+
next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)
|
385 |
+
|
386 |
+
next_token_scores, next_tokens = torch.topk(
|
387 |
+
next_token_scores, 2 * group_size, dim=1, largest=True, sorted=True
|
388 |
+
)
|
389 |
+
|
390 |
+
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
|
391 |
+
next_tokens = next_tokens % vocab_size
|
392 |
+
|
393 |
+
# stateless
|
394 |
+
process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
|
395 |
+
beam_outputs = beam_scorer.process(
|
396 |
+
group_input_ids,
|
397 |
+
next_token_scores,
|
398 |
+
next_tokens,
|
399 |
+
next_indices,
|
400 |
+
pad_token_id=pad_token_id,
|
401 |
+
eos_token_id=eos_token_id,
|
402 |
+
beam_indices=process_beam_indices,
|
403 |
+
)
|
404 |
+
beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
|
405 |
+
beam_next_tokens = beam_outputs["next_beam_tokens"]
|
406 |
+
beam_idx = beam_outputs["next_beam_indices"]
|
407 |
+
|
408 |
+
input_ids[batch_group_indices] = group_input_ids[beam_idx]
|
409 |
+
group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
|
410 |
+
current_tokens[batch_group_indices] = group_input_ids[:, -1]
|
411 |
+
|
412 |
+
# (beam_idx // group_size) -> batch_idx
|
413 |
+
# (beam_idx % group_size) -> offset of idx inside the group
|
414 |
+
reordering_indices[batch_group_indices] = (
|
415 |
+
num_beams * torch.div(beam_idx, group_size, rounding_mode="floor") + group_start_idx + (beam_idx % group_size)
|
416 |
+
)
|
417 |
+
|
418 |
+
input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)
|
419 |
+
|
420 |
+
# increase cur_len
|
421 |
+
cur_len = cur_len + 1
|
422 |
+
if beam_scorer.is_done or stopping_criteria(input_ids, None):
|
423 |
+
break
|
424 |
+
|
425 |
+
final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
|
426 |
+
sequence_outputs = beam_scorer.finalize(
|
427 |
+
input_ids,
|
428 |
+
beam_scores,
|
429 |
+
next_tokens,
|
430 |
+
next_indices,
|
431 |
+
pad_token_id=pad_token_id,
|
432 |
+
eos_token_id=eos_token_id,
|
433 |
+
max_length=stopping_criteria.max_length,
|
434 |
+
beam_indices=final_beam_indices,
|
435 |
+
)
|
436 |
+
return sequence_outputs['sequences']
|
437 |
+
|
438 |
+
|
439 |
+
def prepare_inputs_for_generation(input_ids, image_inputs, past=None, **kwargs):
|
440 |
+
if past:
|
441 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
442 |
+
|
443 |
+
attention_mask = kwargs.get("attention_mask", None)
|
444 |
+
position_ids = kwargs.get("position_ids", None)
|
445 |
+
|
446 |
+
if attention_mask is not None and position_ids is None:
|
447 |
+
# create position_ids on the fly for batch generation
|
448 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
449 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
450 |
+
else:
|
451 |
+
position_ids = None
|
452 |
+
return {
|
453 |
+
"text": input_ids,
|
454 |
+
"images": image_inputs,
|
455 |
+
"past_key_values": past,
|
456 |
+
"position_ids": position_ids,
|
457 |
+
"attention_mask": attention_mask,
|
458 |
+
}
|
src/open_clip/constants.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
2 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
src/open_clip/factory.py
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
import re
|
6 |
+
from copy import deepcopy
|
7 |
+
from pathlib import Path
|
8 |
+
from turtle import forward
|
9 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
14 |
+
from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
|
15 |
+
resize_pos_embed, get_cast_dtype
|
16 |
+
from .coca_model import CoCa
|
17 |
+
from .loss import ClipLoss, DistillClipLoss, CoCaLoss
|
18 |
+
from .openai import load_openai_model
|
19 |
+
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model, download_pretrained_from_hf
|
20 |
+
from .transform import image_transform, AugmentationCfg
|
21 |
+
from .tokenizer import HFTokenizer, tokenize
|
22 |
+
|
23 |
+
|
24 |
+
HF_HUB_PREFIX = 'hf-hub:'
|
25 |
+
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
26 |
+
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
27 |
+
|
28 |
+
|
29 |
+
def _natural_key(string_):
|
30 |
+
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
31 |
+
|
32 |
+
|
33 |
+
def _rescan_model_configs():
|
34 |
+
global _MODEL_CONFIGS
|
35 |
+
|
36 |
+
config_ext = ('.json',)
|
37 |
+
config_files = []
|
38 |
+
for config_path in _MODEL_CONFIG_PATHS:
|
39 |
+
if config_path.is_file() and config_path.suffix in config_ext:
|
40 |
+
config_files.append(config_path)
|
41 |
+
elif config_path.is_dir():
|
42 |
+
for ext in config_ext:
|
43 |
+
config_files.extend(config_path.glob(f'*{ext}'))
|
44 |
+
|
45 |
+
for cf in config_files:
|
46 |
+
with open(cf, 'r') as f:
|
47 |
+
model_cfg = json.load(f)
|
48 |
+
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
|
49 |
+
_MODEL_CONFIGS[cf.stem] = model_cfg
|
50 |
+
|
51 |
+
_MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))}
|
52 |
+
|
53 |
+
|
54 |
+
_rescan_model_configs() # initial populate of model config registry
|
55 |
+
|
56 |
+
|
57 |
+
def list_models():
|
58 |
+
""" enumerate available model architectures based on config files """
|
59 |
+
return list(_MODEL_CONFIGS.keys())
|
60 |
+
|
61 |
+
|
62 |
+
def add_model_config(path):
|
63 |
+
""" add model config path or file and update registry """
|
64 |
+
if not isinstance(path, Path):
|
65 |
+
path = Path(path)
|
66 |
+
_MODEL_CONFIG_PATHS.append(path)
|
67 |
+
_rescan_model_configs()
|
68 |
+
|
69 |
+
|
70 |
+
def get_model_config(model_name):
|
71 |
+
if model_name in _MODEL_CONFIGS:
|
72 |
+
return deepcopy(_MODEL_CONFIGS[model_name])
|
73 |
+
else:
|
74 |
+
return None
|
75 |
+
|
76 |
+
|
77 |
+
def get_tokenizer(model_name):
|
78 |
+
if model_name.startswith(HF_HUB_PREFIX):
|
79 |
+
tokenizer = HFTokenizer(model_name[len(HF_HUB_PREFIX):])
|
80 |
+
else:
|
81 |
+
config = get_model_config(model_name)
|
82 |
+
tokenizer = HFTokenizer(
|
83 |
+
config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
|
84 |
+
return tokenizer
|
85 |
+
|
86 |
+
|
87 |
+
def load_state_dict(checkpoint_path: str, map_location='cpu'):
|
88 |
+
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
89 |
+
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
90 |
+
state_dict = checkpoint['state_dict']
|
91 |
+
else:
|
92 |
+
state_dict = checkpoint
|
93 |
+
if next(iter(state_dict.items()))[0].startswith('module'):
|
94 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
95 |
+
return state_dict
|
96 |
+
|
97 |
+
|
98 |
+
def load_checkpoint(model, checkpoint_path, strict=True):
|
99 |
+
state_dict = load_state_dict(checkpoint_path)
|
100 |
+
# detect old format and make compatible with new format
|
101 |
+
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
|
102 |
+
state_dict = convert_to_custom_text_state_dict(state_dict)
|
103 |
+
resize_pos_embed(state_dict, model)
|
104 |
+
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
|
105 |
+
return incompatible_keys
|
106 |
+
|
107 |
+
|
108 |
+
def create_model(
|
109 |
+
model_name: str,
|
110 |
+
pretrained: Optional[str] = None,
|
111 |
+
precision: str = 'fp32',
|
112 |
+
device: Union[str, torch.device] = 'cpu',
|
113 |
+
jit: bool = False,
|
114 |
+
force_quick_gelu: bool = False,
|
115 |
+
force_custom_text: bool = False,
|
116 |
+
force_patch_dropout: Optional[float] = None,
|
117 |
+
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
118 |
+
pretrained_image: bool = False,
|
119 |
+
pretrained_hf: bool = True,
|
120 |
+
cache_dir: Optional[str] = None,
|
121 |
+
output_dict: Optional[bool] = None,
|
122 |
+
require_pretrained: bool = False,
|
123 |
+
):
|
124 |
+
has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX)
|
125 |
+
if has_hf_hub_prefix:
|
126 |
+
model_id = model_name[len(HF_HUB_PREFIX):]
|
127 |
+
checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
128 |
+
config_path = download_pretrained_from_hf(model_id, filename='open_clip_config.json', cache_dir=cache_dir)
|
129 |
+
|
130 |
+
with open(config_path, 'r', encoding='utf-8') as f:
|
131 |
+
config = json.load(f)
|
132 |
+
pretrained_cfg = config['preprocess_cfg']
|
133 |
+
model_cfg = config['model_cfg']
|
134 |
+
else:
|
135 |
+
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
|
136 |
+
checkpoint_path = None
|
137 |
+
pretrained_cfg = {}
|
138 |
+
model_cfg = None
|
139 |
+
|
140 |
+
if isinstance(device, str):
|
141 |
+
device = torch.device(device)
|
142 |
+
|
143 |
+
if pretrained and pretrained.lower() == 'openai':
|
144 |
+
logging.info(f'Loading pretrained {model_name} from OpenAI.')
|
145 |
+
model = load_openai_model(
|
146 |
+
model_name,
|
147 |
+
precision=precision,
|
148 |
+
device=device,
|
149 |
+
jit=jit,
|
150 |
+
cache_dir=cache_dir,
|
151 |
+
)
|
152 |
+
|
153 |
+
# to always output dict even if it is clip
|
154 |
+
if output_dict and hasattr(model, "output_dict"):
|
155 |
+
model.output_dict = True
|
156 |
+
else:
|
157 |
+
model_cfg = model_cfg or get_model_config(model_name)
|
158 |
+
if model_cfg is not None:
|
159 |
+
logging.info(f'Loaded {model_name} model config.')
|
160 |
+
else:
|
161 |
+
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
|
162 |
+
raise RuntimeError(f'Model config for {model_name} not found.')
|
163 |
+
|
164 |
+
if force_quick_gelu:
|
165 |
+
# override for use of QuickGELU on non-OpenAI transformer models
|
166 |
+
model_cfg["quick_gelu"] = True
|
167 |
+
|
168 |
+
if force_patch_dropout is not None:
|
169 |
+
# override the default patch dropout value
|
170 |
+
model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout
|
171 |
+
|
172 |
+
if force_image_size is not None:
|
173 |
+
# override model config's image size
|
174 |
+
model_cfg["vision_cfg"]["image_size"] = force_image_size
|
175 |
+
|
176 |
+
if pretrained_image:
|
177 |
+
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
|
178 |
+
# pretrained weight loading for timm models set via vision_cfg
|
179 |
+
model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
180 |
+
else:
|
181 |
+
assert False, 'pretrained image towers currently only supported for timm models'
|
182 |
+
|
183 |
+
cast_dtype = get_cast_dtype(precision)
|
184 |
+
is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {})
|
185 |
+
custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model
|
186 |
+
|
187 |
+
if custom_text:
|
188 |
+
if is_hf_model:
|
189 |
+
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
|
190 |
+
if "coca" in model_name:
|
191 |
+
model = CoCa(**model_cfg, cast_dtype=cast_dtype)
|
192 |
+
else:
|
193 |
+
model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype)
|
194 |
+
else:
|
195 |
+
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
|
196 |
+
|
197 |
+
pretrained_loaded = False
|
198 |
+
if pretrained:
|
199 |
+
checkpoint_path = ''
|
200 |
+
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
|
201 |
+
if pretrained_cfg:
|
202 |
+
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
|
203 |
+
elif os.path.exists(pretrained):
|
204 |
+
checkpoint_path = pretrained
|
205 |
+
|
206 |
+
if checkpoint_path:
|
207 |
+
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
208 |
+
load_checkpoint(model, checkpoint_path)
|
209 |
+
else:
|
210 |
+
error_str = (
|
211 |
+
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
|
212 |
+
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
|
213 |
+
logging.warning(error_str)
|
214 |
+
raise RuntimeError(error_str)
|
215 |
+
pretrained_loaded = True
|
216 |
+
elif has_hf_hub_prefix:
|
217 |
+
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
218 |
+
load_checkpoint(model, checkpoint_path)
|
219 |
+
pretrained_loaded = True
|
220 |
+
|
221 |
+
if require_pretrained and not pretrained_loaded:
|
222 |
+
# callers of create_model_from_pretrained always expect pretrained weights
|
223 |
+
raise RuntimeError(
|
224 |
+
f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.')
|
225 |
+
|
226 |
+
model.to(device=device)
|
227 |
+
if precision in ("fp16", "bf16"):
|
228 |
+
convert_weights_to_lp(model, dtype=torch.bfloat16 if precision == 'bf16' else torch.float16)
|
229 |
+
|
230 |
+
# set image / mean metadata from pretrained_cfg if available, or use default
|
231 |
+
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
|
232 |
+
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
|
233 |
+
|
234 |
+
# to always output dict even if it is clip
|
235 |
+
if output_dict and hasattr(model, "output_dict"):
|
236 |
+
model.output_dict = True
|
237 |
+
|
238 |
+
if jit:
|
239 |
+
model = torch.jit.script(model)
|
240 |
+
|
241 |
+
return model
|
242 |
+
|
243 |
+
|
244 |
+
def create_loss(args):
|
245 |
+
if args.distill:
|
246 |
+
return DistillClipLoss(
|
247 |
+
local_loss=args.local_loss,
|
248 |
+
gather_with_grad=args.gather_with_grad,
|
249 |
+
cache_labels=True,
|
250 |
+
rank=args.rank,
|
251 |
+
world_size=args.world_size,
|
252 |
+
use_horovod=args.horovod,
|
253 |
+
)
|
254 |
+
elif "coca" in args.model.lower():
|
255 |
+
return CoCaLoss(
|
256 |
+
caption_loss_weight=args.coca_caption_loss_weight,
|
257 |
+
clip_loss_weight=args.coca_contrastive_loss_weight,
|
258 |
+
local_loss=args.local_loss,
|
259 |
+
gather_with_grad=args.gather_with_grad,
|
260 |
+
cache_labels=True,
|
261 |
+
rank=args.rank,
|
262 |
+
world_size=args.world_size,
|
263 |
+
use_horovod=args.horovod,
|
264 |
+
)
|
265 |
+
return ClipLoss(
|
266 |
+
local_loss=args.local_loss,
|
267 |
+
gather_with_grad=args.gather_with_grad,
|
268 |
+
cache_labels=True,
|
269 |
+
rank=args.rank,
|
270 |
+
world_size=args.world_size,
|
271 |
+
use_horovod=args.horovod,
|
272 |
+
)
|
273 |
+
|
274 |
+
class MLP(torch.nn.Module):
|
275 |
+
def __init__(self, input_size):
|
276 |
+
super().__init__()
|
277 |
+
self.input_size = input_size
|
278 |
+
self.layers = torch.nn.Sequential(
|
279 |
+
torch.nn.Linear(self.input_size, 1024),
|
280 |
+
torch.nn.Dropout(0.2),
|
281 |
+
torch.nn.Linear(1024, 128),
|
282 |
+
torch.nn.Dropout(0.2),
|
283 |
+
torch.nn.Linear(128, 64),
|
284 |
+
torch.nn.Dropout(0.1),
|
285 |
+
torch.nn.Linear(64, 16),
|
286 |
+
torch.nn.Linear(16, 1)
|
287 |
+
)
|
288 |
+
|
289 |
+
def forward(self, x):
|
290 |
+
return self.layers(x)
|
291 |
+
|
292 |
+
# class semantic_head(torch.nn.Module):
|
293 |
+
# def __init__(self, input_size):
|
294 |
+
# super().__init__()
|
295 |
+
# self.input_size = input_size # for ViT-L-14 is 1024
|
296 |
+
# self.seg_head = torch.nn.Sequential(
|
297 |
+
# torch.nn.Linear(input_size, 128),
|
298 |
+
# torch.nn.Dropout(0.2),
|
299 |
+
# torch.nn.Linear(128, 64),
|
300 |
+
# torch.nn.Dropout(0.1),
|
301 |
+
# torch.nn.Linear(64, 16),
|
302 |
+
# torch.nn.Linear(16, 1),
|
303 |
+
# )
|
304 |
+
# self.sigmoid = torch.nn.Sigmoid()
|
305 |
+
|
306 |
+
# def forward(self, x):
|
307 |
+
# return self.sigmoid(self.seg_head(x))
|
308 |
+
|
309 |
+
def create_model_and_transforms(
|
310 |
+
model_name: str,
|
311 |
+
pretrained: Optional[str] = None,
|
312 |
+
precision: str = 'fp32',
|
313 |
+
device: Union[str, torch.device] = 'cpu',
|
314 |
+
jit: bool = False,
|
315 |
+
force_quick_gelu: bool = False,
|
316 |
+
force_custom_text: bool = False,
|
317 |
+
force_patch_dropout: Optional[float] = None,
|
318 |
+
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
319 |
+
pretrained_image: bool = False,
|
320 |
+
pretrained_hf: bool = True,
|
321 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
322 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
323 |
+
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
|
324 |
+
cache_dir: Optional[str] = None,
|
325 |
+
light_augmentation = False,
|
326 |
+
output_dict: Optional[bool] = None,
|
327 |
+
with_score_predictor: bool = False,
|
328 |
+
with_region_predictor: bool = False
|
329 |
+
):
|
330 |
+
model = create_model(
|
331 |
+
model_name,
|
332 |
+
pretrained,
|
333 |
+
precision=precision,
|
334 |
+
device=device,
|
335 |
+
jit=jit,
|
336 |
+
force_quick_gelu=force_quick_gelu,
|
337 |
+
force_custom_text=force_custom_text,
|
338 |
+
force_patch_dropout=force_patch_dropout,
|
339 |
+
force_image_size=force_image_size,
|
340 |
+
pretrained_image=pretrained_image,
|
341 |
+
pretrained_hf=pretrained_hf,
|
342 |
+
cache_dir=cache_dir,
|
343 |
+
output_dict=output_dict,
|
344 |
+
)
|
345 |
+
|
346 |
+
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
347 |
+
image_std = image_std or getattr(model.visual, 'image_std', None)
|
348 |
+
|
349 |
+
if with_score_predictor:
|
350 |
+
model.score_predictor = MLP(model.visual.proj.size(1)).to(device=device, dtype=model.visual.proj.dtype)
|
351 |
+
|
352 |
+
if with_region_predictor:
|
353 |
+
# model.region_predictor = semantic_head(model.visual.proj.size(1)).to(device=device, dtype=model.visual.proj.dtype)
|
354 |
+
model.region_predictor = torch.nn.Linear(model.visual.proj.size(0), 1).to(device=device, dtype=model.visual.proj.dtype)
|
355 |
+
# preprocess_train = image_transform_region(
|
356 |
+
# model.visual.image_size,
|
357 |
+
# is_train=True,
|
358 |
+
# mean=image_mean,
|
359 |
+
# std=image_std
|
360 |
+
# )
|
361 |
+
# preprocess_val = image_transform_region(
|
362 |
+
# model.visual.image_size,
|
363 |
+
# is_train=False,
|
364 |
+
# mean=image_mean,
|
365 |
+
# std=image_std
|
366 |
+
# )
|
367 |
+
|
368 |
+
if light_augmentation:
|
369 |
+
preprocess_val = image_transform(
|
370 |
+
model.visual.image_size,
|
371 |
+
is_train=False,
|
372 |
+
mean=image_mean,
|
373 |
+
std=image_std,
|
374 |
+
resize_longest_max=True,
|
375 |
+
)
|
376 |
+
preprocess_train = preprocess_val
|
377 |
+
else:
|
378 |
+
preprocess_train = image_transform(
|
379 |
+
model.visual.image_size,
|
380 |
+
is_train=True,
|
381 |
+
mean=image_mean,
|
382 |
+
std=image_std
|
383 |
+
)
|
384 |
+
preprocess_val = image_transform(
|
385 |
+
model.visual.image_size,
|
386 |
+
is_train=False,
|
387 |
+
mean=image_mean,
|
388 |
+
std=image_std
|
389 |
+
)
|
390 |
+
|
391 |
+
return model, preprocess_train, preprocess_val
|
392 |
+
|
393 |
+
|
394 |
+
def create_model_from_pretrained(
|
395 |
+
model_name: str,
|
396 |
+
pretrained: Optional[str] = None,
|
397 |
+
precision: str = 'fp32',
|
398 |
+
device: Union[str, torch.device] = 'cpu',
|
399 |
+
jit: bool = False,
|
400 |
+
force_quick_gelu: bool = False,
|
401 |
+
force_custom_text: bool = False,
|
402 |
+
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
403 |
+
return_transform: bool = True,
|
404 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
405 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
406 |
+
cache_dir: Optional[str] = None,
|
407 |
+
):
|
408 |
+
model = create_model(
|
409 |
+
model_name,
|
410 |
+
pretrained,
|
411 |
+
precision=precision,
|
412 |
+
device=device,
|
413 |
+
jit=jit,
|
414 |
+
force_quick_gelu=force_quick_gelu,
|
415 |
+
force_custom_text=force_custom_text,
|
416 |
+
force_image_size=force_image_size,
|
417 |
+
cache_dir=cache_dir,
|
418 |
+
require_pretrained=True,
|
419 |
+
)
|
420 |
+
|
421 |
+
if not return_transform:
|
422 |
+
return model
|
423 |
+
|
424 |
+
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
425 |
+
image_std = image_std or getattr(model.visual, 'image_std', None)
|
426 |
+
preprocess = image_transform(
|
427 |
+
model.visual.image_size,
|
428 |
+
is_train=False,
|
429 |
+
mean=image_mean,
|
430 |
+
std=image_std,
|
431 |
+
)
|
432 |
+
|
433 |
+
return model, preprocess
|
src/open_clip/generation_utils.py
ADDED
File without changes
|
src/open_clip/hf_configs.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# HF architecture dict:
|
2 |
+
arch_dict = {
|
3 |
+
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
4 |
+
"roberta": {
|
5 |
+
"config_names": {
|
6 |
+
"context_length": "max_position_embeddings",
|
7 |
+
"vocab_size": "vocab_size",
|
8 |
+
"width": "hidden_size",
|
9 |
+
"heads": "num_attention_heads",
|
10 |
+
"layers": "num_hidden_layers",
|
11 |
+
"layer_attr": "layer",
|
12 |
+
"token_embeddings_attr": "embeddings"
|
13 |
+
},
|
14 |
+
"pooler": "mean_pooler",
|
15 |
+
},
|
16 |
+
# https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
|
17 |
+
"xlm-roberta": {
|
18 |
+
"config_names": {
|
19 |
+
"context_length": "max_position_embeddings",
|
20 |
+
"vocab_size": "vocab_size",
|
21 |
+
"width": "hidden_size",
|
22 |
+
"heads": "num_attention_heads",
|
23 |
+
"layers": "num_hidden_layers",
|
24 |
+
"layer_attr": "layer",
|
25 |
+
"token_embeddings_attr": "embeddings"
|
26 |
+
},
|
27 |
+
"pooler": "mean_pooler",
|
28 |
+
},
|
29 |
+
# https://huggingface.co/docs/transformers/model_doc/mt5#mt5
|
30 |
+
"mt5": {
|
31 |
+
"config_names": {
|
32 |
+
# unlimited seqlen
|
33 |
+
# https://github.com/google-research/text-to-text-transfer-transformer/issues/273
|
34 |
+
# https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
|
35 |
+
"context_length": "",
|
36 |
+
"vocab_size": "vocab_size",
|
37 |
+
"width": "d_model",
|
38 |
+
"heads": "num_heads",
|
39 |
+
"layers": "num_layers",
|
40 |
+
"layer_attr": "block",
|
41 |
+
"token_embeddings_attr": "embed_tokens"
|
42 |
+
},
|
43 |
+
"pooler": "mean_pooler",
|
44 |
+
},
|
45 |
+
}
|
src/open_clip/hf_model.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" huggingface model adapter
|
2 |
+
|
3 |
+
Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import re
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch import TensorType
|
11 |
+
|
12 |
+
try:
|
13 |
+
import transformers
|
14 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig, PretrainedConfig
|
15 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
|
16 |
+
BaseModelOutputWithPoolingAndCrossAttentions
|
17 |
+
except ImportError as e:
|
18 |
+
transformers = None
|
19 |
+
|
20 |
+
|
21 |
+
class BaseModelOutput:
|
22 |
+
pass
|
23 |
+
|
24 |
+
|
25 |
+
class PretrainedConfig:
|
26 |
+
pass
|
27 |
+
|
28 |
+
from .hf_configs import arch_dict
|
29 |
+
|
30 |
+
|
31 |
+
# utils
|
32 |
+
def _camel2snake(s):
|
33 |
+
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
|
34 |
+
|
35 |
+
|
36 |
+
# TODO: ?last - for gpt-like models
|
37 |
+
_POOLERS = {}
|
38 |
+
|
39 |
+
|
40 |
+
def register_pooler(cls):
|
41 |
+
"""Decorator registering pooler class"""
|
42 |
+
_POOLERS[_camel2snake(cls.__name__)] = cls
|
43 |
+
return cls
|
44 |
+
|
45 |
+
|
46 |
+
@register_pooler
|
47 |
+
class MeanPooler(nn.Module):
|
48 |
+
"""Mean pooling"""
|
49 |
+
|
50 |
+
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
|
51 |
+
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
52 |
+
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
53 |
+
|
54 |
+
|
55 |
+
@register_pooler
|
56 |
+
class MaxPooler(nn.Module):
|
57 |
+
"""Max pooling"""
|
58 |
+
|
59 |
+
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
|
60 |
+
masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
|
61 |
+
return masked_output.max(1).values
|
62 |
+
|
63 |
+
|
64 |
+
@register_pooler
|
65 |
+
class ClsPooler(nn.Module):
|
66 |
+
"""CLS token pooling"""
|
67 |
+
|
68 |
+
def __init__(self, use_pooler_output=True):
|
69 |
+
super().__init__()
|
70 |
+
self.cls_token_position = 0
|
71 |
+
self.use_pooler_output = use_pooler_output
|
72 |
+
|
73 |
+
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
|
74 |
+
if (self.use_pooler_output and
|
75 |
+
isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
|
76 |
+
(x.pooler_output is not None)
|
77 |
+
):
|
78 |
+
return x.pooler_output
|
79 |
+
|
80 |
+
return x.last_hidden_state[:, self.cls_token_position, :]
|
81 |
+
|
82 |
+
|
83 |
+
class HFTextEncoder(nn.Module):
|
84 |
+
"""HuggingFace model adapter"""
|
85 |
+
output_tokens: torch.jit.Final[bool]
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
model_name_or_path: str,
|
90 |
+
output_dim: int,
|
91 |
+
config: PretrainedConfig = None,
|
92 |
+
pooler_type: str = None,
|
93 |
+
proj: str = None,
|
94 |
+
pretrained: bool = True,
|
95 |
+
output_tokens: bool = False,
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
self.output_tokens = output_tokens
|
99 |
+
self.output_dim = output_dim
|
100 |
+
|
101 |
+
# TODO: find better way to get this information
|
102 |
+
uses_transformer_pooler = (pooler_type == "cls_pooler")
|
103 |
+
|
104 |
+
if transformers is None:
|
105 |
+
raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
|
106 |
+
if config is None:
|
107 |
+
self.config = AutoConfig.from_pretrained(model_name_or_path)
|
108 |
+
create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
|
109 |
+
AutoModel.from_config, self.config)
|
110 |
+
# TODO: do all model configs have this attribute? PretrainedConfig does so yes??
|
111 |
+
if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
|
112 |
+
self.transformer = create_func(model_args)
|
113 |
+
self.transformer = self.transformer.encoder
|
114 |
+
else:
|
115 |
+
self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
|
116 |
+
else:
|
117 |
+
self.config = config
|
118 |
+
self.transformer = AutoModel.from_config(config)
|
119 |
+
if pooler_type is None: # get default arch pooler
|
120 |
+
pooler_type = (arch_dict[self.config.model_type]["pooler"])
|
121 |
+
|
122 |
+
self.pooler = _POOLERS[pooler_type]()
|
123 |
+
|
124 |
+
d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
|
125 |
+
if (d_model == output_dim) and (proj is None): # do we always need a proj?
|
126 |
+
self.proj = nn.Identity()
|
127 |
+
elif proj == 'linear':
|
128 |
+
self.proj = nn.Linear(d_model, output_dim, bias=False)
|
129 |
+
elif proj == 'mlp':
|
130 |
+
hidden_size = (d_model + output_dim) // 2
|
131 |
+
self.proj = nn.Sequential(
|
132 |
+
nn.Linear(d_model, hidden_size, bias=False),
|
133 |
+
nn.GELU(),
|
134 |
+
nn.Linear(hidden_size, output_dim, bias=False),
|
135 |
+
)
|
136 |
+
|
137 |
+
def forward(self, x: TensorType):
|
138 |
+
attn_mask = (x != self.config.pad_token_id).long()
|
139 |
+
out = self.transformer(input_ids=x, attention_mask=attn_mask)
|
140 |
+
pooled_out = self.pooler(out, attn_mask)
|
141 |
+
projected = self.proj(pooled_out)
|
142 |
+
|
143 |
+
seq_len = out.last_hidden_state.shape[1]
|
144 |
+
tokens = (
|
145 |
+
out.last_hidden_state[:, torch.arange(seq_len) != self.pooler.cls_token_position, :]
|
146 |
+
if type(self.pooler) == ClsPooler
|
147 |
+
else out.last_hidden_state
|
148 |
+
)
|
149 |
+
|
150 |
+
if self.output_tokens:
|
151 |
+
return projected, tokens
|
152 |
+
return projected
|
153 |
+
|
154 |
+
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
155 |
+
if not unlocked_layers: # full freezing
|
156 |
+
for n, p in self.transformer.named_parameters():
|
157 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
158 |
+
return
|
159 |
+
|
160 |
+
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
161 |
+
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
162 |
+
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
|
163 |
+
embeddings = getattr(
|
164 |
+
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
|
165 |
+
modules = [embeddings, *layer_list][:-unlocked_layers]
|
166 |
+
# freeze layers
|
167 |
+
for module in modules:
|
168 |
+
for n, p in module.named_parameters():
|
169 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
170 |
+
|
171 |
+
@torch.jit.ignore
|
172 |
+
def set_grad_checkpointing(self, enable=True):
|
173 |
+
self.transformer.gradient_checkpointing_enable()
|
174 |
+
|
175 |
+
def init_parameters(self):
|
176 |
+
pass
|
src/open_clip/loss.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from torch.nn.utils.rnn import pad_sequence
|
5 |
+
|
6 |
+
try:
|
7 |
+
import torch.distributed.nn
|
8 |
+
from torch import distributed as dist
|
9 |
+
|
10 |
+
has_distributed = True
|
11 |
+
except ImportError:
|
12 |
+
has_distributed = False
|
13 |
+
|
14 |
+
try:
|
15 |
+
import horovod.torch as hvd
|
16 |
+
except ImportError:
|
17 |
+
hvd = None
|
18 |
+
|
19 |
+
|
20 |
+
def gather_features(
|
21 |
+
image_features,
|
22 |
+
text_features,
|
23 |
+
local_loss=False,
|
24 |
+
gather_with_grad=False,
|
25 |
+
rank=0,
|
26 |
+
world_size=1,
|
27 |
+
use_horovod=False
|
28 |
+
):
|
29 |
+
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
|
30 |
+
if use_horovod:
|
31 |
+
assert hvd is not None, 'Please install horovod'
|
32 |
+
if gather_with_grad:
|
33 |
+
all_image_features = hvd.allgather(image_features)
|
34 |
+
all_text_features = hvd.allgather(text_features)
|
35 |
+
else:
|
36 |
+
with torch.no_grad():
|
37 |
+
all_image_features = hvd.allgather(image_features)
|
38 |
+
all_text_features = hvd.allgather(text_features)
|
39 |
+
if not local_loss:
|
40 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
41 |
+
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
|
42 |
+
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
|
43 |
+
gathered_image_features[rank] = image_features
|
44 |
+
gathered_text_features[rank] = text_features
|
45 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
46 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
47 |
+
else:
|
48 |
+
# We gather tensors from all gpus
|
49 |
+
if gather_with_grad:
|
50 |
+
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
|
51 |
+
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
|
52 |
+
else:
|
53 |
+
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
|
54 |
+
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
|
55 |
+
dist.all_gather(gathered_image_features, image_features)
|
56 |
+
dist.all_gather(gathered_text_features, text_features)
|
57 |
+
if not local_loss:
|
58 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
59 |
+
gathered_image_features[rank] = image_features
|
60 |
+
gathered_text_features[rank] = text_features
|
61 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
62 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
63 |
+
|
64 |
+
return all_image_features, all_text_features
|
65 |
+
|
66 |
+
|
67 |
+
class ClipLoss(nn.Module):
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
local_loss=False,
|
72 |
+
gather_with_grad=False,
|
73 |
+
cache_labels=False,
|
74 |
+
rank=0,
|
75 |
+
world_size=1,
|
76 |
+
use_horovod=False,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
self.local_loss = local_loss
|
80 |
+
self.gather_with_grad = gather_with_grad
|
81 |
+
self.cache_labels = cache_labels
|
82 |
+
self.rank = rank
|
83 |
+
self.world_size = world_size
|
84 |
+
self.use_horovod = use_horovod
|
85 |
+
|
86 |
+
# cache state
|
87 |
+
self.prev_num_logits = 0
|
88 |
+
self.labels = {}
|
89 |
+
|
90 |
+
def get_ground_truth(self, device, num_logits) -> torch.Tensor:
|
91 |
+
# calculated ground-truth and cache if enabled
|
92 |
+
if self.prev_num_logits != num_logits or device not in self.labels:
|
93 |
+
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
94 |
+
if self.world_size > 1 and self.local_loss:
|
95 |
+
labels = labels + num_logits * self.rank
|
96 |
+
if self.cache_labels:
|
97 |
+
self.labels[device] = labels
|
98 |
+
self.prev_num_logits = num_logits
|
99 |
+
else:
|
100 |
+
labels = self.labels[device]
|
101 |
+
return labels
|
102 |
+
|
103 |
+
def get_logits(self, image_features, text_features, logit_scale):
|
104 |
+
if self.world_size > 1:
|
105 |
+
all_image_features, all_text_features = gather_features(
|
106 |
+
image_features, text_features,
|
107 |
+
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
|
108 |
+
|
109 |
+
if self.local_loss:
|
110 |
+
logits_per_image = logit_scale * image_features @ all_text_features.T
|
111 |
+
logits_per_text = logit_scale * text_features @ all_image_features.T
|
112 |
+
else:
|
113 |
+
logits_per_image = logit_scale * all_image_features @ all_text_features.T
|
114 |
+
logits_per_text = logits_per_image.T
|
115 |
+
else:
|
116 |
+
logits_per_image = logit_scale * image_features @ text_features.T
|
117 |
+
logits_per_text = logit_scale * text_features @ image_features.T
|
118 |
+
|
119 |
+
return logits_per_image, logits_per_text
|
120 |
+
|
121 |
+
def forward(self, image_features, text_features, logit_scale, output_dict=False):
|
122 |
+
device = image_features.device
|
123 |
+
logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale)
|
124 |
+
|
125 |
+
labels = self.get_ground_truth(device, logits_per_image.shape[0])
|
126 |
+
|
127 |
+
total_loss = (
|
128 |
+
F.cross_entropy(logits_per_image, labels) +
|
129 |
+
F.cross_entropy(logits_per_text, labels)
|
130 |
+
) / 2
|
131 |
+
return total_loss
|
132 |
+
|
133 |
+
class PreferenceLoss(nn.Module):
|
134 |
+
|
135 |
+
def forward(self, logits_per_image, num_images, labels):
|
136 |
+
|
137 |
+
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
|
138 |
+
paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-999)
|
139 |
+
|
140 |
+
ce_loss = F.cross_entropy(paired_logits, labels)
|
141 |
+
return ce_loss
|
142 |
+
|
143 |
+
class HPSLoss(nn.Module):
|
144 |
+
|
145 |
+
def forward(self, text_logits, labels):
|
146 |
+
|
147 |
+
device = text_logits.device
|
148 |
+
text_0_logits, text_1_logits = text_logits.chunk(2, dim=-1)
|
149 |
+
label_0, label_1 = labels.chunk(2, dim=-1)
|
150 |
+
|
151 |
+
index = torch.arange(text_0_logits.shape[0], device=device, dtype=torch.long)
|
152 |
+
text_0_logits = text_0_logits[index, index]
|
153 |
+
text_1_logits = text_1_logits[index, index]
|
154 |
+
text_logits = torch.stack([text_0_logits, text_1_logits], dim=-1)
|
155 |
+
text_0_labels = torch.zeros(text_logits.shape[0], device=device, dtype=torch.long)
|
156 |
+
text_1_labels = text_0_labels + 1
|
157 |
+
|
158 |
+
text_0_loss = torch.nn.functional.cross_entropy(text_logits, text_0_labels, reduction="none")
|
159 |
+
text_1_loss = torch.nn.functional.cross_entropy(text_logits, text_1_labels, reduction="none")
|
160 |
+
|
161 |
+
text_loss = label_0 * text_0_loss + label_1 * text_1_loss
|
162 |
+
|
163 |
+
# absolute_example_weight = 1 / num_per_prompt
|
164 |
+
# denominator = absolute_example_weight.sum()
|
165 |
+
# weight_per_example = absolute_example_weight / denominator
|
166 |
+
# text_loss *= weight_per_example
|
167 |
+
|
168 |
+
text_loss = text_loss.sum()
|
169 |
+
return text_loss
|
170 |
+
|
171 |
+
class RankingLoss(nn.Module):
|
172 |
+
|
173 |
+
def forward(self, logits_per_image, num_images, labels, margin = 1.0):
|
174 |
+
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
|
175 |
+
label_list = [label for label in labels.split(num_images.tolist())]
|
176 |
+
# ranked_logits = [torch.index_select(paired_logits_list[i], 0, rank) for i, rank in enumerate(label_list)]
|
177 |
+
|
178 |
+
paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-1)
|
179 |
+
padded_labels = pad_sequence(label_list, batch_first=True, padding_value=10)
|
180 |
+
|
181 |
+
# regulized_logits = torch.log(torch.sigmoid(paired_logits))
|
182 |
+
|
183 |
+
diff = paired_logits.unsqueeze(1) - paired_logits.unsqueeze(2)
|
184 |
+
# diff = paired_logits.unsqueeze(1) - paired_logits.unsqueeze(2)
|
185 |
+
# diff_label = torch.clamp(padded_labels.unsqueeze(1) - padded_labels.unsqueeze(2), min=-1, max=1)
|
186 |
+
diff_label = - (padded_labels.unsqueeze(1) - padded_labels.unsqueeze(2))
|
187 |
+
mask = torch.triu(torch.ones(diff.shape[1], diff.shape[1]), diagonal=1).bool().detach()
|
188 |
+
|
189 |
+
loss = torch.clamp(margin - torch.mul(diff[:, ~mask],diff_label[:,~mask]), min=0).mean()
|
190 |
+
return loss
|
191 |
+
|
192 |
+
class CoCaLoss(ClipLoss):
|
193 |
+
def __init__(
|
194 |
+
self,
|
195 |
+
caption_loss_weight,
|
196 |
+
clip_loss_weight,
|
197 |
+
pad_id=0, # pad_token for open_clip custom tokenizer
|
198 |
+
local_loss=False,
|
199 |
+
gather_with_grad=False,
|
200 |
+
cache_labels=False,
|
201 |
+
rank=0,
|
202 |
+
world_size=1,
|
203 |
+
use_horovod=False,
|
204 |
+
):
|
205 |
+
super().__init__(
|
206 |
+
local_loss=local_loss,
|
207 |
+
gather_with_grad=gather_with_grad,
|
208 |
+
cache_labels=cache_labels,
|
209 |
+
rank=rank,
|
210 |
+
world_size=world_size,
|
211 |
+
use_horovod=use_horovod
|
212 |
+
)
|
213 |
+
|
214 |
+
self.clip_loss_weight = clip_loss_weight
|
215 |
+
self.caption_loss_weight = caption_loss_weight
|
216 |
+
self.caption_loss = nn.CrossEntropyLoss(ignore_index=pad_id)
|
217 |
+
|
218 |
+
def forward(self, image_features, text_features, logits, labels, logit_scale, output_dict=False):
|
219 |
+
clip_loss = super().forward(image_features, text_features, logit_scale)
|
220 |
+
clip_loss = self.clip_loss_weight * clip_loss
|
221 |
+
|
222 |
+
caption_loss = self.caption_loss(
|
223 |
+
logits.permute(0, 2, 1),
|
224 |
+
labels,
|
225 |
+
)
|
226 |
+
caption_loss = caption_loss * self.caption_loss_weight
|
227 |
+
|
228 |
+
if output_dict:
|
229 |
+
return {"contrastive_loss": clip_loss, "caption_loss": caption_loss}
|
230 |
+
|
231 |
+
return clip_loss, caption_loss
|
232 |
+
|
233 |
+
|
234 |
+
class DistillClipLoss(ClipLoss):
|
235 |
+
|
236 |
+
def dist_loss(self, teacher_logits, student_logits):
|
237 |
+
return -(teacher_logits.softmax(dim=1) * student_logits.log_softmax(dim=1)).sum(dim=1).mean(dim=0)
|
238 |
+
|
239 |
+
def forward(
|
240 |
+
self,
|
241 |
+
image_features,
|
242 |
+
text_features,
|
243 |
+
logit_scale,
|
244 |
+
dist_image_features,
|
245 |
+
dist_text_features,
|
246 |
+
dist_logit_scale,
|
247 |
+
output_dict=False,
|
248 |
+
):
|
249 |
+
logits_per_image, logits_per_text = \
|
250 |
+
self.get_logits(image_features, text_features, logit_scale)
|
251 |
+
|
252 |
+
dist_logits_per_image, dist_logits_per_text = \
|
253 |
+
self.get_logits(dist_image_features, dist_text_features, dist_logit_scale)
|
254 |
+
|
255 |
+
labels = self.get_ground_truth(image_features.device, logits_per_image.shape[0])
|
256 |
+
|
257 |
+
contrastive_loss = (
|
258 |
+
F.cross_entropy(logits_per_image, labels) +
|
259 |
+
F.cross_entropy(logits_per_text, labels)
|
260 |
+
) / 2
|
261 |
+
|
262 |
+
distill_loss = (
|
263 |
+
self.dist_loss(dist_logits_per_image, logits_per_image) +
|
264 |
+
self.dist_loss(dist_logits_per_text, logits_per_text)
|
265 |
+
) / 2
|
266 |
+
|
267 |
+
if output_dict:
|
268 |
+
return {"contrastive_loss": contrastive_loss, "distill_loss": distill_loss}
|
269 |
+
|
270 |
+
return contrastive_loss, distill_loss
|
src/open_clip/model.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CLIP Model
|
2 |
+
|
3 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
"""
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import logging
|
7 |
+
import math
|
8 |
+
from typing import Optional, Tuple, Union
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import nn
|
14 |
+
from torch.utils.checkpoint import checkpoint
|
15 |
+
|
16 |
+
from .hf_model import HFTextEncoder
|
17 |
+
from .modified_resnet import ModifiedResNet
|
18 |
+
from .timm_model import TimmModel
|
19 |
+
from .transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
|
20 |
+
from .utils import to_2tuple
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class CLIPVisionCfg:
|
25 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
26 |
+
width: int = 768
|
27 |
+
head_width: int = 64
|
28 |
+
mlp_ratio: float = 4.0
|
29 |
+
patch_size: int = 16
|
30 |
+
image_size: Union[Tuple[int, int], int] = 224
|
31 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
32 |
+
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
33 |
+
input_patchnorm: bool = False # whether to use dual patchnorm - would only apply the input layernorm on each patch, as post-layernorm already exist in original clip vit design
|
34 |
+
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
|
35 |
+
attentional_pool: bool = False # whether to use attentional pooler in the last embedding layer
|
36 |
+
n_queries: int = 256 # n_queries for attentional pooler
|
37 |
+
attn_pooler_heads: int = 8 # n heads for attentional_pooling
|
38 |
+
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
|
39 |
+
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
40 |
+
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
41 |
+
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
42 |
+
timm_proj_bias: bool = False # enable bias final projection
|
43 |
+
timm_drop: float = 0. # head dropout
|
44 |
+
timm_drop_path: Optional[float] = None # backbone stochastic depth
|
45 |
+
output_tokens: bool = False
|
46 |
+
|
47 |
+
|
48 |
+
@dataclass
|
49 |
+
class CLIPTextCfg:
|
50 |
+
context_length: int = 77
|
51 |
+
vocab_size: int = 49408
|
52 |
+
width: int = 512
|
53 |
+
heads: int = 8
|
54 |
+
layers: int = 12
|
55 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
56 |
+
hf_model_name: str = None
|
57 |
+
hf_tokenizer_name: str = None
|
58 |
+
hf_model_pretrained: bool = True
|
59 |
+
proj: str = 'mlp'
|
60 |
+
pooler_type: str = 'mean_pooler'
|
61 |
+
embed_cls: bool = False
|
62 |
+
pad_id: int = 0
|
63 |
+
output_tokens: bool = False
|
64 |
+
|
65 |
+
|
66 |
+
def get_cast_dtype(precision: str):
|
67 |
+
cast_dtype = None
|
68 |
+
if precision == 'bf16':
|
69 |
+
cast_dtype = torch.bfloat16
|
70 |
+
elif precision == 'fp16':
|
71 |
+
cast_dtype = torch.float16
|
72 |
+
return cast_dtype
|
73 |
+
|
74 |
+
|
75 |
+
def _build_vision_tower(
|
76 |
+
embed_dim: int,
|
77 |
+
vision_cfg: CLIPVisionCfg,
|
78 |
+
quick_gelu: bool = False,
|
79 |
+
cast_dtype: Optional[torch.dtype] = None
|
80 |
+
):
|
81 |
+
if isinstance(vision_cfg, dict):
|
82 |
+
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
83 |
+
|
84 |
+
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
85 |
+
# memory efficient in recent PyTorch releases (>= 1.10).
|
86 |
+
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
87 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
88 |
+
|
89 |
+
if vision_cfg.timm_model_name:
|
90 |
+
visual = TimmModel(
|
91 |
+
vision_cfg.timm_model_name,
|
92 |
+
pretrained=vision_cfg.timm_model_pretrained,
|
93 |
+
pool=vision_cfg.timm_pool,
|
94 |
+
proj=vision_cfg.timm_proj,
|
95 |
+
proj_bias=vision_cfg.timm_proj_bias,
|
96 |
+
drop=vision_cfg.timm_drop,
|
97 |
+
drop_path=vision_cfg.timm_drop_path,
|
98 |
+
embed_dim=embed_dim,
|
99 |
+
image_size=vision_cfg.image_size,
|
100 |
+
)
|
101 |
+
act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
|
102 |
+
elif isinstance(vision_cfg.layers, (tuple, list)):
|
103 |
+
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
|
104 |
+
visual = ModifiedResNet(
|
105 |
+
layers=vision_cfg.layers,
|
106 |
+
output_dim=embed_dim,
|
107 |
+
heads=vision_heads,
|
108 |
+
image_size=vision_cfg.image_size,
|
109 |
+
width=vision_cfg.width,
|
110 |
+
)
|
111 |
+
else:
|
112 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
113 |
+
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
114 |
+
visual = VisionTransformer(
|
115 |
+
image_size=vision_cfg.image_size,
|
116 |
+
patch_size=vision_cfg.patch_size,
|
117 |
+
width=vision_cfg.width,
|
118 |
+
layers=vision_cfg.layers,
|
119 |
+
heads=vision_heads,
|
120 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
121 |
+
ls_init_value=vision_cfg.ls_init_value,
|
122 |
+
patch_dropout=vision_cfg.patch_dropout,
|
123 |
+
input_patchnorm=vision_cfg.input_patchnorm,
|
124 |
+
global_average_pool=vision_cfg.global_average_pool,
|
125 |
+
attentional_pool=vision_cfg.attentional_pool,
|
126 |
+
n_queries=vision_cfg.n_queries,
|
127 |
+
attn_pooler_heads=vision_cfg.attn_pooler_heads,
|
128 |
+
output_tokens=vision_cfg.output_tokens,
|
129 |
+
output_dim=embed_dim,
|
130 |
+
act_layer=act_layer,
|
131 |
+
norm_layer=norm_layer,
|
132 |
+
)
|
133 |
+
|
134 |
+
return visual
|
135 |
+
|
136 |
+
|
137 |
+
def _build_text_tower(
|
138 |
+
embed_dim: int,
|
139 |
+
text_cfg: CLIPTextCfg,
|
140 |
+
quick_gelu: bool = False,
|
141 |
+
cast_dtype: Optional[torch.dtype] = None,
|
142 |
+
):
|
143 |
+
if isinstance(text_cfg, dict):
|
144 |
+
text_cfg = CLIPTextCfg(**text_cfg)
|
145 |
+
|
146 |
+
if text_cfg.hf_model_name:
|
147 |
+
text = HFTextEncoder(
|
148 |
+
text_cfg.hf_model_name,
|
149 |
+
output_dim=embed_dim,
|
150 |
+
proj=text_cfg.proj,
|
151 |
+
pooler_type=text_cfg.pooler_type,
|
152 |
+
pretrained=text_cfg.hf_model_pretrained,
|
153 |
+
output_tokens=text_cfg.output_tokens,
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
157 |
+
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
158 |
+
|
159 |
+
text = TextTransformer(
|
160 |
+
context_length=text_cfg.context_length,
|
161 |
+
vocab_size=text_cfg.vocab_size,
|
162 |
+
width=text_cfg.width,
|
163 |
+
heads=text_cfg.heads,
|
164 |
+
layers=text_cfg.layers,
|
165 |
+
ls_init_value=text_cfg.ls_init_value,
|
166 |
+
output_dim=embed_dim,
|
167 |
+
embed_cls=text_cfg.embed_cls,
|
168 |
+
output_tokens=text_cfg.output_tokens,
|
169 |
+
pad_id=text_cfg.pad_id,
|
170 |
+
act_layer=act_layer,
|
171 |
+
norm_layer=norm_layer,
|
172 |
+
)
|
173 |
+
return text
|
174 |
+
|
175 |
+
|
176 |
+
class CLIP(nn.Module):
|
177 |
+
output_dict: torch.jit.Final[bool]
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
embed_dim: int,
|
182 |
+
vision_cfg: CLIPVisionCfg,
|
183 |
+
text_cfg: CLIPTextCfg,
|
184 |
+
quick_gelu: bool = False,
|
185 |
+
cast_dtype: Optional[torch.dtype] = None,
|
186 |
+
output_dict: bool = False,
|
187 |
+
):
|
188 |
+
super().__init__()
|
189 |
+
self.output_dict = output_dict
|
190 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
191 |
+
|
192 |
+
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
193 |
+
self.transformer = text.transformer
|
194 |
+
self.vocab_size = text.vocab_size
|
195 |
+
self.token_embedding = text.token_embedding
|
196 |
+
self.positional_embedding = text.positional_embedding
|
197 |
+
self.ln_final = text.ln_final
|
198 |
+
self.text_projection = text.text_projection
|
199 |
+
self.register_buffer('attn_mask', text.attn_mask, persistent=False)
|
200 |
+
|
201 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
202 |
+
|
203 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
204 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
205 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
206 |
+
|
207 |
+
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
208 |
+
locked_layers = []
|
209 |
+
locked_layers.append(self.token_embedding)
|
210 |
+
self.positional_embedding.requires_grad = False
|
211 |
+
if unlocked_layers > 0:
|
212 |
+
locked_layers.append(self.transformer.resblocks[:-unlocked_layers])
|
213 |
+
else:
|
214 |
+
locked_layers.append(self.transformer)
|
215 |
+
locked_layers.append(self.ln_final)
|
216 |
+
self.text_projection.requires_grad = False
|
217 |
+
|
218 |
+
# freeze layers
|
219 |
+
for module in locked_layers:
|
220 |
+
for n, p in module.named_parameters():
|
221 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
222 |
+
|
223 |
+
@torch.jit.ignore
|
224 |
+
def set_grad_checkpointing(self, enable=True):
|
225 |
+
self.visual.set_grad_checkpointing(enable)
|
226 |
+
self.transformer.grad_checkpointing = enable
|
227 |
+
|
228 |
+
def encode_image(self, image, normalize: bool = False):
|
229 |
+
features = self.visual(image)
|
230 |
+
return F.normalize(features, dim=-1) if normalize else features
|
231 |
+
|
232 |
+
def encode_text(self, text, normalize: bool = False):
|
233 |
+
cast_dtype = self.transformer.get_cast_dtype()
|
234 |
+
|
235 |
+
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
236 |
+
|
237 |
+
x = x + self.positional_embedding.to(cast_dtype)
|
238 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
239 |
+
x = self.transformer(x, attn_mask=self.attn_mask)
|
240 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
241 |
+
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
|
242 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
243 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
244 |
+
return F.normalize(x, dim=-1) if normalize else x
|
245 |
+
|
246 |
+
def forward(self, image, text):
|
247 |
+
image_features = self.encode_image(image, normalize=True)
|
248 |
+
text_features = self.encode_text(text, normalize=True)
|
249 |
+
if self.output_dict:
|
250 |
+
return {
|
251 |
+
"image_features": image_features,
|
252 |
+
"text_features": text_features,
|
253 |
+
"logit_scale": self.logit_scale.exp()
|
254 |
+
}
|
255 |
+
return image_features, text_features, self.logit_scale.exp()
|
256 |
+
|
257 |
+
|
258 |
+
class CustomTextCLIP(nn.Module):
|
259 |
+
output_dict: torch.jit.Final[bool]
|
260 |
+
|
261 |
+
def __init__(
|
262 |
+
self,
|
263 |
+
embed_dim: int,
|
264 |
+
vision_cfg: CLIPVisionCfg,
|
265 |
+
text_cfg: CLIPTextCfg,
|
266 |
+
quick_gelu: bool = False,
|
267 |
+
cast_dtype: Optional[torch.dtype] = None,
|
268 |
+
output_dict: bool = False,
|
269 |
+
):
|
270 |
+
super().__init__()
|
271 |
+
self.output_dict = output_dict
|
272 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
273 |
+
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
274 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
275 |
+
|
276 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
277 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
278 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
279 |
+
|
280 |
+
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
281 |
+
self.text.lock(unlocked_layers, freeze_layer_norm)
|
282 |
+
|
283 |
+
@torch.jit.ignore
|
284 |
+
def set_grad_checkpointing(self, enable=True):
|
285 |
+
self.visual.set_grad_checkpointing(enable)
|
286 |
+
self.text.set_grad_checkpointing(enable)
|
287 |
+
|
288 |
+
def encode_image(self, image, normalize: bool = False):
|
289 |
+
features = self.visual(image)
|
290 |
+
return F.normalize(features, dim=-1) if normalize else features
|
291 |
+
|
292 |
+
def encode_text(self, text, normalize: bool = False):
|
293 |
+
features = self.text(text)
|
294 |
+
return F.normalize(features, dim=-1) if normalize else features
|
295 |
+
|
296 |
+
def forward(self, image, text):
|
297 |
+
image_features = self.encode_image(image, normalize=True)
|
298 |
+
text_features = self.encode_text(text, normalize=True)
|
299 |
+
if self.output_dict:
|
300 |
+
return {
|
301 |
+
"image_features": image_features,
|
302 |
+
"text_features": text_features,
|
303 |
+
"logit_scale": self.logit_scale.exp()
|
304 |
+
}
|
305 |
+
return image_features, text_features, self.logit_scale.exp()
|
306 |
+
|
307 |
+
|
308 |
+
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
|
309 |
+
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
|
310 |
+
|
311 |
+
def _convert_weights(l):
|
312 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
313 |
+
l.weight.data = l.weight.data.to(dtype)
|
314 |
+
if l.bias is not None:
|
315 |
+
l.bias.data = l.bias.data.to(dtype)
|
316 |
+
|
317 |
+
if isinstance(l, (nn.MultiheadAttention, Attention)):
|
318 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
319 |
+
tensor = getattr(l, attr)
|
320 |
+
if tensor is not None:
|
321 |
+
tensor.data = tensor.data.to(dtype)
|
322 |
+
|
323 |
+
for name in ["text_projection", "proj"]:
|
324 |
+
if hasattr(l, name):
|
325 |
+
attr = getattr(l, name)
|
326 |
+
if attr is not None:
|
327 |
+
attr.data = attr.data.to(dtype)
|
328 |
+
|
329 |
+
model.apply(_convert_weights)
|
330 |
+
|
331 |
+
|
332 |
+
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
|
333 |
+
|
334 |
+
|
335 |
+
# used to maintain checkpoint compatibility
|
336 |
+
def convert_to_custom_text_state_dict(state_dict: dict):
|
337 |
+
if 'text_projection' in state_dict:
|
338 |
+
# old format state_dict, move text tower -> .text
|
339 |
+
new_state_dict = {}
|
340 |
+
for k, v in state_dict.items():
|
341 |
+
if any(k.startswith(p) for p in (
|
342 |
+
'text_projection',
|
343 |
+
'positional_embedding',
|
344 |
+
'token_embedding',
|
345 |
+
'transformer',
|
346 |
+
'ln_final',
|
347 |
+
)):
|
348 |
+
k = 'text.' + k
|
349 |
+
new_state_dict[k] = v
|
350 |
+
return new_state_dict
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def build_model_from_openai_state_dict(
|
355 |
+
state_dict: dict,
|
356 |
+
quick_gelu=True,
|
357 |
+
cast_dtype=torch.float16,
|
358 |
+
):
|
359 |
+
vit = "visual.proj" in state_dict
|
360 |
+
|
361 |
+
if vit:
|
362 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
363 |
+
vision_layers = len(
|
364 |
+
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
365 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
366 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
367 |
+
image_size = vision_patch_size * grid_size
|
368 |
+
else:
|
369 |
+
counts: list = [
|
370 |
+
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
371 |
+
vision_layers = tuple(counts)
|
372 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
373 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
374 |
+
vision_patch_size = None
|
375 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
376 |
+
image_size = output_width * 32
|
377 |
+
|
378 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
379 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
380 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
381 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
382 |
+
transformer_heads = transformer_width // 64
|
383 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
384 |
+
|
385 |
+
vision_cfg = CLIPVisionCfg(
|
386 |
+
layers=vision_layers,
|
387 |
+
width=vision_width,
|
388 |
+
patch_size=vision_patch_size,
|
389 |
+
image_size=image_size,
|
390 |
+
)
|
391 |
+
text_cfg = CLIPTextCfg(
|
392 |
+
context_length=context_length,
|
393 |
+
vocab_size=vocab_size,
|
394 |
+
width=transformer_width,
|
395 |
+
heads=transformer_heads,
|
396 |
+
layers=transformer_layers,
|
397 |
+
)
|
398 |
+
model = CLIP(
|
399 |
+
embed_dim,
|
400 |
+
vision_cfg=vision_cfg,
|
401 |
+
text_cfg=text_cfg,
|
402 |
+
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
|
403 |
+
cast_dtype=cast_dtype,
|
404 |
+
)
|
405 |
+
|
406 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
407 |
+
state_dict.pop(key, None)
|
408 |
+
|
409 |
+
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
|
410 |
+
model.load_state_dict(state_dict)
|
411 |
+
return model.eval()
|
412 |
+
|
413 |
+
|
414 |
+
def trace_model(model, batch_size=256, device=torch.device('cpu')):
|
415 |
+
model.eval()
|
416 |
+
image_size = model.visual.image_size
|
417 |
+
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
|
418 |
+
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
|
419 |
+
model = torch.jit.trace_module(
|
420 |
+
model,
|
421 |
+
inputs=dict(
|
422 |
+
forward=(example_images, example_text),
|
423 |
+
encode_text=(example_text,),
|
424 |
+
encode_image=(example_images,)
|
425 |
+
))
|
426 |
+
model.visual.image_size = image_size
|
427 |
+
return model
|
428 |
+
|
429 |
+
|
430 |
+
def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
|
431 |
+
# Rescale the grid of position embeddings when loading from state_dict
|
432 |
+
old_pos_embed = state_dict.get('visual.positional_embedding', None)
|
433 |
+
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
434 |
+
return
|
435 |
+
grid_size = to_2tuple(model.visual.grid_size)
|
436 |
+
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
437 |
+
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
438 |
+
if new_seq_len == old_pos_embed.shape[0]:
|
439 |
+
return
|
440 |
+
|
441 |
+
if extra_tokens:
|
442 |
+
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
443 |
+
else:
|
444 |
+
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
445 |
+
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
446 |
+
|
447 |
+
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
448 |
+
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
449 |
+
pos_emb_img = F.interpolate(
|
450 |
+
pos_emb_img,
|
451 |
+
size=grid_size,
|
452 |
+
mode=interpolation,
|
453 |
+
antialias=antialias,
|
454 |
+
align_corners=False,
|
455 |
+
)
|
456 |
+
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
457 |
+
if pos_emb_tok is not None:
|
458 |
+
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
459 |
+
else:
|
460 |
+
new_pos_embed = pos_emb_img
|
461 |
+
state_dict['visual.positional_embedding'] = new_pos_embed
|
src/open_clip/model_configs/RN101-quickgelu.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 512,
|
3 |
+
"quick_gelu": true,
|
4 |
+
"vision_cfg": {
|
5 |
+
"image_size": 224,
|
6 |
+
"layers": [
|
7 |
+
3,
|
8 |
+
4,
|
9 |
+
23,
|
10 |
+
3
|
11 |
+
],
|
12 |
+
"width": 64,
|
13 |
+
"patch_size": null
|
14 |
+
},
|
15 |
+
"text_cfg": {
|
16 |
+
"context_length": 77,
|
17 |
+
"vocab_size": 49408,
|
18 |
+
"width": 512,
|
19 |
+
"heads": 8,
|
20 |
+
"layers": 12
|
21 |
+
}
|
22 |
+
}
|
src/open_clip/model_configs/RN101.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 512,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": [
|
6 |
+
3,
|
7 |
+
4,
|
8 |
+
23,
|
9 |
+
3
|
10 |
+
],
|
11 |
+
"width": 64,
|
12 |
+
"patch_size": null
|
13 |
+
},
|
14 |
+
"text_cfg": {
|
15 |
+
"context_length": 77,
|
16 |
+
"vocab_size": 49408,
|
17 |
+
"width": 512,
|
18 |
+
"heads": 8,
|
19 |
+
"layers": 12
|
20 |
+
}
|
21 |
+
}
|
src/open_clip/model_configs/RN50-quickgelu.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"quick_gelu": true,
|
4 |
+
"vision_cfg": {
|
5 |
+
"image_size": 224,
|
6 |
+
"layers": [
|
7 |
+
3,
|
8 |
+
4,
|
9 |
+
6,
|
10 |
+
3
|
11 |
+
],
|
12 |
+
"width": 64,
|
13 |
+
"patch_size": null
|
14 |
+
},
|
15 |
+
"text_cfg": {
|
16 |
+
"context_length": 77,
|
17 |
+
"vocab_size": 49408,
|
18 |
+
"width": 512,
|
19 |
+
"heads": 8,
|
20 |
+
"layers": 12
|
21 |
+
}
|
22 |
+
}
|
src/open_clip/model_configs/RN50.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": [
|
6 |
+
3,
|
7 |
+
4,
|
8 |
+
6,
|
9 |
+
3
|
10 |
+
],
|
11 |
+
"width": 64,
|
12 |
+
"patch_size": null
|
13 |
+
},
|
14 |
+
"text_cfg": {
|
15 |
+
"context_length": 77,
|
16 |
+
"vocab_size": 49408,
|
17 |
+
"width": 512,
|
18 |
+
"heads": 8,
|
19 |
+
"layers": 12
|
20 |
+
}
|
21 |
+
}
|
src/open_clip/model_configs/RN50x16.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 768,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 384,
|
5 |
+
"layers": [
|
6 |
+
6,
|
7 |
+
8,
|
8 |
+
18,
|
9 |
+
8
|
10 |
+
],
|
11 |
+
"width": 96,
|
12 |
+
"patch_size": null
|
13 |
+
},
|
14 |
+
"text_cfg": {
|
15 |
+
"context_length": 77,
|
16 |
+
"vocab_size": 49408,
|
17 |
+
"width": 768,
|
18 |
+
"heads": 12,
|
19 |
+
"layers": 12
|
20 |
+
}
|
21 |
+
}
|
src/open_clip/model_configs/RN50x4.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 640,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 288,
|
5 |
+
"layers": [
|
6 |
+
4,
|
7 |
+
6,
|
8 |
+
10,
|
9 |
+
6
|
10 |
+
],
|
11 |
+
"width": 80,
|
12 |
+
"patch_size": null
|
13 |
+
},
|
14 |
+
"text_cfg": {
|
15 |
+
"context_length": 77,
|
16 |
+
"vocab_size": 49408,
|
17 |
+
"width": 640,
|
18 |
+
"heads": 10,
|
19 |
+
"layers": 12
|
20 |
+
}
|
21 |
+
}
|
src/open_clip/model_configs/RN50x64.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 448,
|
5 |
+
"layers": [
|
6 |
+
3,
|
7 |
+
15,
|
8 |
+
36,
|
9 |
+
10
|
10 |
+
],
|
11 |
+
"width": 128,
|
12 |
+
"patch_size": null
|
13 |
+
},
|
14 |
+
"text_cfg": {
|
15 |
+
"context_length": 77,
|
16 |
+
"vocab_size": 49408,
|
17 |
+
"width": 1024,
|
18 |
+
"heads": 16,
|
19 |
+
"layers": 12
|
20 |
+
}
|
21 |
+
}
|
src/open_clip/model_configs/ViT-B-16-plus-240.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 640,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 240,
|
5 |
+
"layers": 12,
|
6 |
+
"width": 896,
|
7 |
+
"patch_size": 16
|
8 |
+
},
|
9 |
+
"text_cfg": {
|
10 |
+
"context_length": 77,
|
11 |
+
"vocab_size": 49408,
|
12 |
+
"width": 640,
|
13 |
+
"heads": 10,
|
14 |
+
"layers": 12
|
15 |
+
}
|
16 |
+
}
|