Spaces:
Runtime error
Runtime error
xu-song
commited on
Commit
•
74a60bc
0
Parent(s):
Duplicate from eson/bert-perplexity-debug
Browse files- .gitattributes +34 -0
- .gitignore +16 -0
- README.md +13 -0
- app.py +58 -0
- perplexity.py +57 -0
- requirements.txt +2 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.py[cod]
|
3 |
+
*$py.class
|
4 |
+
|
5 |
+
# C extensions
|
6 |
+
*.so
|
7 |
+
|
8 |
+
# Distribution / packaging
|
9 |
+
flagged/
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
eggs/
|
15 |
+
.eggs/
|
16 |
+
.idea/
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Bert Perplexity
|
3 |
+
emoji: 💩
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.18.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: eson/bert-perplexity-debug
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# author: xusong
|
3 |
+
# time: 2022/8/23 16:06
|
4 |
+
|
5 |
+
from perplexity import PerplexityPipeline
|
6 |
+
from transformers import BertTokenizer, BertForMaskedLM
|
7 |
+
import gradio as gr
|
8 |
+
import time
|
9 |
+
|
10 |
+
en_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
11 |
+
en_model = BertForMaskedLM.from_pretrained("bert-base-uncased")
|
12 |
+
en_pipeline = PerplexityPipeline(model=en_model, tokenizer=en_tokenizer)
|
13 |
+
|
14 |
+
zh_tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
|
15 |
+
zh_model = BertForMaskedLM.from_pretrained("bert-base-chinese")
|
16 |
+
zh_pipeline = PerplexityPipeline(model=zh_model, tokenizer=zh_tokenizer)
|
17 |
+
|
18 |
+
|
19 |
+
def ppl(model_version, text):
|
20 |
+
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), model_version, text)
|
21 |
+
if model_version == "bert-base-uncased":
|
22 |
+
result = en_pipeline(text)
|
23 |
+
else:
|
24 |
+
result = zh_pipeline(text)
|
25 |
+
return result["ppl"], result
|
26 |
+
|
27 |
+
|
28 |
+
examples = [
|
29 |
+
["bert-base-uncased", "New York City is located in the northeastern United States."],
|
30 |
+
["bert-base-uncased", "New York City is located in the western United States."],
|
31 |
+
["bert-base-chinese", "少先队员因该为老人让坐"],
|
32 |
+
]
|
33 |
+
|
34 |
+
css = "#json-container {height:: 400px; overflow: auto !important}"
|
35 |
+
|
36 |
+
corr_iface = gr.Interface(
|
37 |
+
fn=ppl,
|
38 |
+
inputs=[
|
39 |
+
# gr.Dropdown(["bert-base-uncased", "bert-base-chinese"], value="bert-base-uncased"), # TODO 调整大小和位置
|
40 |
+
gr.Radio(
|
41 |
+
["bert-base-uncased", "bert-base-chinese"],
|
42 |
+
value="bert-base-uncased"
|
43 |
+
),
|
44 |
+
gr.Textbox(
|
45 |
+
value="New York City is located in the northeastern United States.",
|
46 |
+
label="input text"
|
47 |
+
)],
|
48 |
+
outputs=[
|
49 |
+
gr.Textbox(label="Perplexity"),
|
50 |
+
gr.JSON(label="Tokens", elem_id="json-container")],
|
51 |
+
examples=examples,
|
52 |
+
title="BERT as Language Model",
|
53 |
+
description='',
|
54 |
+
css=css
|
55 |
+
)
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
corr_iface.launch()
|
perplexity.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# author: xusong
|
3 |
+
# time: 2022/8/22 12:06
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from transformers import FillMaskPipeline
|
8 |
+
|
9 |
+
|
10 |
+
class PerplexityPipeline(FillMaskPipeline):
|
11 |
+
|
12 |
+
def create_sequential_mask(self, input_data, mask_count=1):
|
13 |
+
_, seq_length = input_data["input_ids"].shape
|
14 |
+
mask_count = seq_length - 2
|
15 |
+
|
16 |
+
input_ids = input_data["input_ids"]
|
17 |
+
|
18 |
+
new_input_ids = torch.repeat_interleave(input_data["input_ids"], repeats=mask_count, dim=0)
|
19 |
+
token_type_ids = torch.repeat_interleave(input_data["token_type_ids"], repeats=mask_count, dim=0)
|
20 |
+
attention_mask = torch.repeat_interleave(input_data["attention_mask"], repeats=mask_count, dim=0)
|
21 |
+
masked_lm_labels = []
|
22 |
+
masked_lm_positions = list(range(1, mask_count + 1))
|
23 |
+
for i in masked_lm_positions:
|
24 |
+
new_input_ids[i - 1][i] = self.tokenizer.mask_token_id
|
25 |
+
masked_lm_labels.append(input_ids[0][i].item())
|
26 |
+
new_data = {"input_ids": new_input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
|
27 |
+
return new_data, masked_lm_positions, masked_lm_labels
|
28 |
+
|
29 |
+
def __call__(self, input_text, *args, **kwargs):
|
30 |
+
"""
|
31 |
+
Compute perplexity for given sentence.
|
32 |
+
"""
|
33 |
+
if not isinstance(input_text, str):
|
34 |
+
return None
|
35 |
+
# 1. create sequential mask
|
36 |
+
model_inputs = self.tokenizer(input_text, return_tensors='pt')
|
37 |
+
new_data, masked_lm_positions, masked_lm_labels = self.create_sequential_mask(model_inputs.data)
|
38 |
+
model_inputs.data = new_data
|
39 |
+
labels = torch.tensor(masked_lm_labels)
|
40 |
+
|
41 |
+
# 2. predict
|
42 |
+
model_outputs = self.model(**model_inputs)
|
43 |
+
|
44 |
+
# 3. compute perplexity
|
45 |
+
sentence = {}
|
46 |
+
tokens = []
|
47 |
+
for i in range(len(labels)):
|
48 |
+
model_outputs_i = {}
|
49 |
+
model_outputs_i["input_ids"] = model_inputs["input_ids"][i:i + 1]
|
50 |
+
model_outputs_i["logits"] = model_outputs["logits"][i:i + 1]
|
51 |
+
outputs = self.postprocess(model_outputs_i, target_ids=labels[i:i + 1])
|
52 |
+
print(outputs)
|
53 |
+
tokens.append({"token": outputs[0]["token_str"],
|
54 |
+
"prob": outputs[0]["score"]})
|
55 |
+
sentence["tokens"] = tokens
|
56 |
+
sentence["ppl"] = float(np.exp(- sum(np.log(token["prob"]) for token in tokens) / len(tokens)))
|
57 |
+
return sentence
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers>=4.21.1
|
2 |
+
torch
|