File size: 16,507 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import os
import time
from datetime import timedelta
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from mmengine.config import Config
from mmengine.utils import ProgressBar
from transformers import AutoConfig, AutoModel

class RamDataset(torch.utils.data.Dataset):
    def __init__(self, data_path, is_train=True, num_relation_classes=56):
        super().__init__()
        self.num_relation_classes = num_relation_classes
        data = np.load(data_path, allow_pickle=True)
        self.samples = data["arr_0"]
        sample_num = self.samples.size
        self.sample_idx_list = []
        for idx in range(sample_num):
            if self.samples[idx]["is_train"] == is_train:
                self.sample_idx_list.append(idx)

    def __getitem__(self, idx):
        sample = self.samples[self.sample_idx_list[idx]]
        object_num = sample["feat"].shape[0]
        embedding = torch.from_numpy(sample["feat"])
        gt_rels = sample["relations"]
        rel_target = self._get_target(object_num, gt_rels)
        return embedding, rel_target, gt_rels

    def __len__(self):
        return len(self.sample_idx_list)

    def _get_target(self, object_num, gt_rels):
        rel_target = torch.zeros([self.num_relation_classes, object_num, object_num])
        for ii, jj, cls_relationship in gt_rels:
            rel_target[cls_relationship, ii, jj] = 1
        return rel_target


class RamModel(nn.Module):
    def __init__(
        self,
        pretrained_model_name_or_path,
        load_pretrained_weights=True,
        num_transformer_layer=2,
        input_feature_size=256,
        output_feature_size=768,
        cls_feature_size=512,
        num_relation_classes=56,
        pred_type="attention",
        loss_type="bce",
    ):
        super().__init__()
        # 0. config
        self.cls_feature_size = cls_feature_size
        self.num_relation_classes = num_relation_classes
        self.pred_type = pred_type
        self.loss_type = loss_type

        # 1. fc input and output
        self.fc_input = nn.Sequential(
            nn.Linear(input_feature_size, output_feature_size),
            nn.LayerNorm(output_feature_size),
        )
        self.fc_output = nn.Sequential(
            nn.Linear(output_feature_size, output_feature_size),
            nn.LayerNorm(output_feature_size),
        )
        # 2. transformer model
        if load_pretrained_weights:
            self.model = AutoModel.from_pretrained(pretrained_model_name_or_path)
        else:
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path)
            self.model = AutoModel.from_config(config)
        if num_transformer_layer != "all" and isinstance(num_transformer_layer, int):
            self.model.encoder.layer = self.model.encoder.layer[:num_transformer_layer]
        # 3. predict head
        self.cls_sub = nn.Linear(output_feature_size, cls_feature_size * num_relation_classes)
        self.cls_obj = nn.Linear(output_feature_size, cls_feature_size * num_relation_classes)
        # 4. loss
        if self.loss_type == "bce":
            self.bce_loss = nn.BCEWithLogitsLoss()
        elif self.loss_type == "multi_label_ce":
            print("Use Multi Label Cross Entropy Loss.")

    def forward(self, embeds, attention_mask=None):
        """
        embeds: (batch_size, token_num, feature_size)
        attention_mask: (batch_size, token_num)
        """
        # 1. fc input
        embeds = self.fc_input(embeds)
        # 2. transformer model
        position_ids = torch.ones([1, embeds.shape[1]]).to(embeds.device).to(torch.long)
        outputs = self.model.forward(inputs_embeds=embeds, attention_mask=attention_mask, position_ids=position_ids)
        embeds = outputs["last_hidden_state"]
        # 3. fc output
        embeds = self.fc_output(embeds)
        # 4. predict head
        batch_size, token_num, feature_size = embeds.shape
        sub_embeds = self.cls_sub(embeds).reshape([batch_size, token_num, self.num_relation_classes, self.cls_feature_size]).permute([0, 2, 1, 3])
        obj_embeds = self.cls_obj(embeds).reshape([batch_size, token_num, self.num_relation_classes, self.cls_feature_size]).permute([0, 2, 1, 3])
        if self.pred_type == "attention":
            cls_pred = sub_embeds @ torch.transpose(obj_embeds, 2, 3) / self.cls_feature_size**0.5  # noqa
        elif self.pred_type == "einsum":
            cls_pred = torch.einsum("nrsc,nroc->nrso", sub_embeds, obj_embeds)
        return cls_pred

    def loss(self, pred, target, attention_mask):
        loss_dict = dict()
        batch_size, relation_num, _, _ = pred.shape

        mask = torch.zeros_like(pred).to(pred.device)
        for idx in range(batch_size):
            n = torch.sum(attention_mask[idx]).to(torch.int)
            mask[idx, :, :n, :n] = 1
        pred = pred * mask - 9999 * (1 - mask)

        if self.loss_type == "bce":
            loss = self.bce_loss(pred, target)
        elif self.loss_type == "multi_label_ce":
            input_tensor = torch.permute(pred, (1, 0, 2, 3))
            target_tensor = torch.permute(target, (1, 0, 2, 3))
            input_tensor = pred.reshape([relation_num, -1])
            target_tensor = target.reshape([relation_num, -1])
            loss = self.multilabel_categorical_crossentropy(target_tensor, input_tensor)
            weight = loss / loss.max()
            loss = loss * weight
        loss = loss.mean()
        loss_dict["loss"] = loss

        # running metric
        recall_20 = get_recall_N(pred, target, object_num=20)
        loss_dict["recall@20"] = recall_20
        return loss_dict

    def multilabel_categorical_crossentropy(self, y_true, y_pred):
        """
        https://kexue.fm/archives/7359
        """
        y_pred = (1 - 2 * y_true) * y_pred
        y_pred_neg = y_pred - y_true * 9999
        y_pred_pos = y_pred - (1 - y_true) * 9999
        zeros = torch.zeros_like(y_pred[..., :1])
        y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
        y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
        neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
        pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
        return neg_loss + pos_loss


def get_recall_N(y_pred, y_true, object_num=20):
    """
    y_pred: [batch_size, 56, object_num, object_num]
    y_true: [batch_size, 56, object_num, object_num]
    """

    device = y_pred.device
    recall_list = []

    for idx in range(len(y_true)):
        sample_y_true = []
        sample_y_pred = []

        # find topk
        _, topk_indices = torch.topk(
            y_true[idx : idx + 1].reshape(
                [
                    -1,
                ]
            ),
            k=object_num,
        )
        for index in topk_indices:
            pred_cls = index // (y_true.shape[2] ** 2)
            index_subject_object = index % (y_true.shape[2] ** 2)
            pred_subject = index_subject_object // y_true.shape[2]
            pred_object = index_subject_object % y_true.shape[2]
            if y_true[idx, pred_cls, pred_subject, pred_object] == 0:
                continue
            sample_y_true.append([pred_subject, pred_object, pred_cls])

        # find topk
        _, topk_indices = torch.topk(
            y_pred[idx : idx + 1].reshape(
                [
                    -1,
                ]
            ),
            k=object_num,
        )
        for index in topk_indices:
            pred_cls = index // (y_pred.shape[2] ** 2)
            index_subject_object = index % (y_pred.shape[2] ** 2)
            pred_subject = index_subject_object // y_pred.shape[2]
            pred_object = index_subject_object % y_pred.shape[2]
            sample_y_pred.append([pred_subject, pred_object, pred_cls])

        recall = len([x for x in sample_y_pred if x in sample_y_true]) / (len(sample_y_true) + 1e-8)
        recall_list.append(recall)

    recall = torch.tensor(recall_list).to(device).mean() * 100
    return recall


class RamTrainer(object):
    def __init__(self, config):
        self.config = config
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self._build_dataset()
        self._build_dataloader()
        self._build_model()
        self._build_optimizer()
        self._build_lr_scheduler()

    def _build_dataset(self):
        self.dataset = RamDataset(**self.config.dataset)

    def _build_dataloader(self):
        self.dataloader = torch.utils.data.DataLoader(
            self.dataset,
            batch_size=self.config.dataloader.batch_size,
            shuffle=True if self.config.dataset.is_train else False,
        )

    def _build_model(self):
        self.model = RamModel(**self.config.model).to(self.device)
        if self.config.load_from is not None:
            self.model.load_state_dict(torch.load(self.config.load_from))
        self.model.train()

    def _build_optimizer(self):
        self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.config.optim.lr, weight_decay=self.config.optim.weight_decay, eps=self.config.optim.eps, betas=self.config.optim.betas)

    def _build_lr_scheduler(self):
        self.lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=self.config.optim.lr_scheduler.step, gamma=self.config.optim.lr_scheduler.gamma)

    def train(self):
        t_start = time.time()
        running_avg_loss = 0
        for epoch_idx in range(self.config.num_epoch):
            for batch_idx, batch_data in enumerate(self.dataloader):
                batch_embeds = batch_data[0].to(torch.float32).to(self.device)
                batch_target = batch_data[1].to(torch.float32).to(self.device)
                attention_mask = batch_embeds.new_ones((batch_embeds.shape[0], batch_embeds.shape[1]))
                batch_pred = self.model.forward(batch_embeds, attention_mask)
                loss_dict = self.model.loss(batch_pred, batch_target, attention_mask)
                loss = loss_dict["loss"]
                recall_20 = loss_dict["recall@20"]
                self.optimizer.zero_grad()
                loss.backward()
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.optim.max_norm, self.config.optim.norm_type)
                self.optimizer.step()
                running_avg_loss += loss.item()

                if batch_idx % 100 == 0:
                    t_current = time.time()
                    num_finished_step = epoch_idx * self.config.num_epoch * len(self.dataloader) + batch_idx + 1
                    num_to_do_step = (self.config.num_epoch - epoch_idx - 1) * len(self.dataloader) + (len(self.dataloader) - batch_idx - 1)
                    avg_speed = num_finished_step / (t_current - t_start)
                    eta = num_to_do_step / avg_speed
                    print(
                        "ETA={:0>8}, Epoch={}, Batch={}/{}, LR={}, Loss={:.4f}, RunningAvgLoss={:.4f}, Recall@20={:.2f}%".format(
                            str(timedelta(seconds=int(eta))), epoch_idx + 1, batch_idx, len(self.dataloader), self.lr_scheduler.get_last_lr()[0], loss.item(), running_avg_loss / num_finished_step, recall_20.item()
                        )
                    )
            self.lr_scheduler.step()
            if not os.path.exists(self.config.output_dir):
                os.makedirs(self.config.output_dir)
            save_path = os.path.join(self.config.output_dir, "epoch_{}.pth".format(epoch_idx + 1))
            print("Save epoch={} checkpoint to {}".format(epoch_idx + 1, save_path))
            torch.save(self.model.state_dict(), save_path)
        return save_path


class RamPredictor(object):
    def __init__(self, config):
        self.config = config
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self._build_dataset()
        self._build_dataloader()
        self._build_model()

    def _build_dataset(self):
        self.dataset = RamDataset(**self.config.dataset)

    def _build_dataloader(self):
        self.dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.config.dataloader.batch_size, shuffle=False)

    def _build_model(self):
        self.model = RamModel(**self.config.model).to(self.device)
        if self.config.load_from is not None:
            self.model.load_state_dict(torch.load(self.config.load_from))
        self.model.eval()

    def predict(self, batch_embeds, pred_keep_num=100):
        """
        Parameters
        ----------
            batch_embeds: (batch_size=1, token_num, feature_size)
            pred_keep_num: int
        Returns
        -------
            batch_pred: (batch_size, relation_num, object_num, object_num)
            pred_rels: [[sub_id, obj_id, rel_id], ...]
        """
        if not isinstance(batch_embeds, torch.Tensor):
            batch_embeds = torch.asarray(batch_embeds)
        batch_embeds = batch_embeds.to(torch.float32).to(self.device)
        attention_mask = batch_embeds.new_ones((batch_embeds.shape[0], batch_embeds.shape[1]))
        batch_pred = self.model.forward(batch_embeds, attention_mask)
        for idx_i in range(batch_pred.shape[2]):
            batch_pred[:, :, idx_i, idx_i] = -9999
        batch_pred = batch_pred.sigmoid()

        pred_rels = []
        _, topk_indices = torch.topk(
            batch_pred.reshape(
                [
                    -1,
                ]
            ),
            k=pred_keep_num,
        )

        # subject, object, relation
        for index in topk_indices:
            pred_relation = index // (batch_pred.shape[2] ** 2)
            index_subject_object = index % (batch_pred.shape[2] ** 2)
            pred_subject = index_subject_object // batch_pred.shape[2]
            pred_object = index_subject_object % batch_pred.shape[2]
            pred = [pred_subject.item(), pred_object.item(), pred_relation.item()]
            pred_rels.append(pred)
        return batch_pred, pred_rels

    def eval(self):
        sum_recall_20 = 0.0
        sum_recall_50 = 0.0
        sum_recall_100 = 0.0
        prog_bar = ProgressBar(len(self.dataloader))
        for batch_idx, batch_data in enumerate(self.dataloader):
            batch_embeds = batch_data[0]
            batch_target = batch_data[1]
            gt_rels = batch_data[2]
            batch_pred, pred_rels = self.predict(batch_embeds)
            this_recall_20 = get_recall_N(batch_pred, batch_target, object_num=20)
            this_recall_50 = get_recall_N(batch_pred, batch_target, object_num=50)
            this_recall_100 = get_recall_N(batch_pred, batch_target, object_num=100)
            sum_recall_20 += this_recall_20.item()
            sum_recall_50 += this_recall_50.item()
            sum_recall_100 += this_recall_100.item()
            prog_bar.update()
        recall_20 = sum_recall_20 / len(self.dataloader)
        recall_50 = sum_recall_50 / len(self.dataloader)
        recall_100 = sum_recall_100 / len(self.dataloader)
        metric = {
            "recall_20": recall_20,
            "recall_50": recall_50,
            "recall_100": recall_100,
        }
        return metric


if __name__ == "__main__":
    # Config
    config = dict(
        dataset=dict(
            data_path="./data/feat_0420.npz",
            is_train=True,
            num_relation_classes=56,
        ),
        dataloader=dict(
            batch_size=4,
        ),
        model=dict(
            pretrained_model_name_or_path="bert-base-uncased",
            load_pretrained_weights=True,
            num_transformer_layer=2,
            input_feature_size=256,
            output_feature_size=768,
            cls_feature_size=512,
            num_relation_classes=56,
            pred_type="attention",
            loss_type="multi_label_ce",
        ),
        optim=dict(
            lr=1e-4,
            weight_decay=0.05,
            eps=1e-8,
            betas=(0.9, 0.999),
            max_norm=0.01,
            norm_type=2,
            lr_scheduler=dict(
                step=[6, 10],
                gamma=0.1,
            ),
        ),
        num_epoch=12,
        output_dir="./work_dirs",
        load_from=None,
    )

    # Train
    config = Config(config)
    trainer = RamTrainer(config)
    last_model_path = trainer.train()

    # Test/Eval
    config.dataset.is_train = False
    config.load_from = last_model_path
    predictor = RamPredictor(config)
    metric = predictor.eval()
    print(metric)