Spaces:
Runtime error
Runtime error
File size: 35,647 Bytes
f8f5cdf c071a86 f8f5cdf c071a86 f8f5cdf e5efca7 4979800 e5efca7 4979800 e5efca7 f8f5cdf cde08ad e5efca7 cde08ad 4979800 e5efca7 cde08ad f8f5cdf e5efca7 4979800 e5efca7 4979800 f8f5cdf e5efca7 f8f5cdf e5efca7 4979800 e5efca7 4979800 e5efca7 4979800 e5efca7 4979800 e5efca7 4979800 f8f5cdf 4979800 f8f5cdf 4979800 f8f5cdf e5efca7 f8f5cdf e5efca7 4979800 f8f5cdf 4979800 f8f5cdf 4979800 f8f5cdf e5efca7 f8f5cdf 4979800 f8f5cdf 4979800 f8f5cdf 4979800 f8f5cdf 4979800 f8f5cdf 4979800 f8f5cdf 4979800 f8f5cdf 4979800 e5efca7 4979800 f8f5cdf cde08ad f8f5cdf 4979800 f8f5cdf 4979800 f8f5cdf 4979800 f8f5cdf 4979800 f8f5cdf cde08ad f8f5cdf 4979800 cde08ad 4979800 cde08ad e5efca7 f8f5cdf 4979800 e5efca7 4979800 f8f5cdf cde08ad f8f5cdf cde08ad 4979800 f8f5cdf 4979800 f8f5cdf cde08ad e5efca7 4979800 e5efca7 4979800 e5efca7 f8f5cdf e5efca7 f8f5cdf 4979800 f8f5cdf e5efca7 f8f5cdf 4979800 f8f5cdf e5efca7 4979800 f8f5cdf cde08ad e5efca7 cde08ad e5efca7 4979800 f8f5cdf cde08ad f8f5cdf cde08ad f8f5cdf 4979800 f8f5cdf e5efca7 f8f5cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 |
import warnings
warnings.filterwarnings('ignore')
import subprocess, io, os, sys, time
os.system("pip install gradio==3.50.2")
import gradio as gr
from loguru import logger
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# if os.environ.get('IS_MY_DEBUG') is None:
# result = subprocess.run(['pip', 'install', '-e', 'GroundingDINO'], check=True)
# print(f'pip install GroundingDINO = {result}')
logger.info(f"Start app...")
result = subprocess.run(['pip', 'list'], check=True)
print(f'pip list = {result}')
sys.path.insert(0, './GroundingDINO')
import argparse
import copy
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont, ImageOps
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# I2SB
import sys
sys.path.insert(0, "/home/ubuntu/Thesis-Demo/I2SB")
sys.path.insert(0, "/home/ubuntu/Thesis-Demo/SegFormer")
import numpy as np
import torch
import torch.distributed as dist
import torchvision.transforms as transforms
import torchvision.utils as tu
from easydict import EasyDict as edict
from fastapi import (Body, Depends, FastAPI, File, Form, HTTPException, Query,
UploadFile)
from ipdb import set_trace as debug
from PIL import Image
from torch.multiprocessing import Process
from torch.utils.data import DataLoader, Subset
from torch_ema import ExponentialMovingAverage
import I2SB.distributed_util as dist_util
from I2SB.corruption import build_corruption
from I2SB.dataset import air_liquide
from I2SB.i2sb import Runner, ckpt_util, download_ckpt
from I2SB.logger import Logger
from I2SB.sample import *
from pathlib import Path
inpaint_checkpoint = Path("/home/ubuntu/Thesis-Demo/I2SB/results")
if not inpaint_checkpoint.exists():
os.system("pip install transformers==4.32.0")
# SegFormer
from PIL import Image
from SegFormer.mmseg.apis import inference_segmentor, init_segmentor, visualize_result_pyplot
from SegFormer.mmseg.core.evaluation import get_palette
import cv2
import numpy as np
import matplotlib
matplotlib.use('AGG')
plt = matplotlib.pyplot
# import matplotlib.pyplot as plt
groundingdino_enable = True
sam_enable = True
inpainting_enable = True
ram_enable = False
lama_cleaner_enable = True
kosmos_enable = False
# qwen_enable = True
# from qwen_utils import *
if os.environ.get('IS_MY_DEBUG') is not None:
sam_enable = False
ram_enable = False
inpainting_enable = False
kosmos_enable = False
# segment anything
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
# diffusers
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
from huggingface_hub import hf_hub_download
from util_computer import computer_info
# relate anything
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
from ram_train_eval import RamModel, RamPredictor
from mmengine.config import Config as mmengine_Config
if lama_cleaner_enable:
from lama_cleaner.helper import (
load_img,
numpy_to_bytes,
resize_max_size,
)
# from transformers import AutoProcessor, AutoModelForVision2Seq
import ast
if kosmos_enable:
os.system("pip install transformers@git+https://github.com/huggingface/transformers.git@main")
# os.system("pip install transformers==4.32.0")
from kosmos_utils import *
from util_tencent import getTextTrans
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint = './sam_vit_h_4b8939.pth'
output_dir = "outputs"
device = 'cpu'
os.makedirs(output_dir, exist_ok=True)
groundingdino_model = None
sam_device = None
sam_model = None
sam_predictor = None
sam_mask_generator = None
sd_model = None
lama_cleaner_model= None
ram_model = None
kosmos_model = None
kosmos_processor = None
colors = [(255, 0, 0), (0, 255, 0)]
markers = [1, 5]
i2sb_opt = edict(
distributed=False,
device="cuda",
batch_size=1,
nfe=10,
dataset="sample",
dataset_dir=Path(f"dataset/sample"),
n_gpu_per_node=1,
use_fp16=False,
ckpt="inpaint-freeform2030",
image_size=256,
partition=None,
global_size=1,
global_rank=0,
clip_denoise=True
)
i2sb_transforms = transforms.Compose([
transforms.Resize(i2sb_opt.image_size),
transforms.CenterCrop(i2sb_opt.image_size),
transforms.ToTensor(),
transforms.Lambda(lambda t: (t * 2) - 1) # [0,1] --> [-1, 1]
])
def get_point(img, sel_pix, evt: gr.SelectData):
img = np.array(img, dtype=np.uint8)
sel_pix.append(evt.index)
# draw points
print(sel_pix)
for point in sel_pix:
cv2.drawMarker(img, point, colors[0], markerType=markers[0], markerSize=6, thickness=2)
return Image.fromarray(img).convert("RGB")
def undo_button(orig_img, sel_pix):
if orig_img:
temp = orig_img.copy()
temp = np.array(temp, dtype=np.uint8)
if len(sel_pix) != 0:
sel_pix.pop()
for point in sel_pix:
cv2.drawMarker(temp, point, colors[0], markerType=markers[0], markerSize=6, thickness=2)
return Image.fromarray(temp).convert("RGB")
return orig_img
def clear_button(orig_img):
return orig_img, []
def toggle_button(orig_img, task_type):
print(task_type)
if task_type == "segment":
ret = gr.Image(value= orig_img,elem_id="image_upload", type='pil', label="Upload", height=512, tool = "editor")# tool = "sketch", brush_color='#00FFFF', mask_opacity=0.6)
elif task_type == "inpainting":
ret = gr.Image(value = orig_img, elem_id="image_upload", type='pil', label="Upload", height=512, tool = "sketch", brush_color='#00FFFF', mask_opacity=0.6)
task_type = not task_type
return ret, task_type
def store_img(img):
print("call for store")
return img, [] # when new image is uploaded, `selected_points` should be empty
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location=device)
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def load_i2sb_model():
RESULT_DIR = Path("I2SB/results")
global i2sb_model
global ckpt_opt
global corrupt_type
global nfe
s = time.time()
# main from here
log = Logger(0, ".log")
# get (default) ckpt option
ckpt_opt = ckpt_util.build_ckpt_option(i2sb_opt, log, RESULT_DIR / i2sb_opt.ckpt)
corrupt_type = ckpt_opt.corrupt
nfe = i2sb_opt.nfe or ckpt_opt.interval-1
# build corruption method
# corrupt_method = build_corruption(i2sb_opt, log, corrupt_type=cor
# rupt_type)
runner = Runner(ckpt_opt, log, save_opt=False)
if i2sb_opt.use_fp16:
runner.ema.copy_to() # copy weight from ema to net
runner.net.diffusion_model.convert_to_fp16()
runner.ema = ExponentialMovingAverage(
runner.net.parameters(), decay=0.99) # re-init ema with fp16 weight
logger.info(f"I2SB Loading time:\t {(time.time()-s)*1e3} ms.")
print("Loading time:", (time.time()-s)*1e3, "ms.")
i2sb_model = runner
return runner
def load_segformer(device):
global segformer_model
s = time.time()
config = "SegFormer/local_configs/segformer/B3/segformer.b3.256x256.wtm.160k.py"
checkpoint = "SegFormer/work_dirs/segformer.b3.256x256.wtm.160k/iter_160000.pth"
model = init_segmentor(config, checkpoint, device=device)
logger.info(f"SegFormer Loading time:\t {(time.time()-s)*1e3} ms.")
segformer_model = model
return model
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
try:
font = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf')
font_size = 36
new_font = ImageFont.truetype(font, font_size)
draw.text((x0+2, y0+2), str(label), font=new_font, fill="white")
except Exception as e:
pass
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
def load_image(image_path):
# # load image
if isinstance(image_path, PIL.Image.Image):
image_pil = image_path
else:
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label)
def xywh_to_xyxy(box, sizeW, sizeH):
if isinstance(box, list):
box = torch.Tensor(box)
box = box * torch.Tensor([sizeW, sizeH, sizeW, sizeH])
box[:2] -= box[2:] / 2
box[2:] += box[:2]
box = box.numpy()
return box
def mask_extend(img, box, extend_pixels=10, useRectangle=True):
box[0] = int(box[0])
box[1] = int(box[1])
box[2] = int(box[2])
box[3] = int(box[3])
region = img.crop(tuple(box))
new_width = box[2] - box[0] + 2*extend_pixels
new_height = box[3] - box[1] + 2*extend_pixels
region_BILINEAR = region.resize((int(new_width), int(new_height)))
if useRectangle:
region_draw = ImageDraw.Draw(region_BILINEAR)
region_draw.rectangle((0, 0, new_width, new_height), fill=(255, 255, 255))
img.paste(region_BILINEAR, (int(box[0]-extend_pixels), int(box[1]-extend_pixels)))
return img
def mix_masks(imgs):
re_img = 1 - np.asarray(imgs[0].convert("1"))
for i in range(len(imgs)-1):
re_img = np.multiply(re_img, 1 - np.asarray(imgs[i+1].convert("1")))
re_img = 1 - re_img
return Image.fromarray(np.uint8(255*re_img))
def set_device(args):
global device
if os.environ.get('IS_MY_DEBUG') is None:
device = args.cuda if torch.cuda.is_available() else 'cpu'
else:
device = 'cpu'
print(f'device={device}')
def get_sam_vit_h_4b8939():
if not os.path.exists('./sam_vit_h_4b8939.pth'):
logger.info(f"get sam_vit_h_4b8939.pth...")
result = subprocess.run(['wget', '-nv', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
print(f'wget sam_vit_h_4b8939.pth result = {result}')
def load_sam_model(device):
# initialize SAM
global sam_model, sam_predictor, sam_mask_generator, sam_device
get_sam_vit_h_4b8939()
logger.info(f"initialize SAM model...")
sam_device = device
sam_model = build_sam(checkpoint=sam_checkpoint).to(sam_device)
sam_predictor = SamPredictor(sam_model)
sam_mask_generator = SamAutomaticMaskGenerator(sam_model)
def load_sd_model(device):
# initialize stable-diffusion-inpainting
global sd_model
logger.info(f"initialize stable-diffusion-inpainting...")
sd_model = None
if os.environ.get('IS_MY_DEBUG') is None:
sd_model = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="fp16",
# "stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16,
)
sd_model = sd_model.to(device)
def forward_i2sb(img, mask, dilation_mask_extend):
print(np.unique(mask),mask.shape)
mask = np.where(mask > 0, 1, 0)
print(np.unique(mask),mask.shape)
mask = mask.astype(np.uint8)
if dilation_mask_extend.isdigit():
kernel_size = int(dilation_mask_extend)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(kernel_size), int(kernel_size)))
mask = cv2.dilate(mask, kernel, iterations = 1)
img_tensor = i2sb_transforms(img).to(
i2sb_opt.device).unsqueeze(0)
mask_tensor = torch.from_numpy(np.resize(np.array(mask), (256,256))).to(
i2sb_opt.device).unsqueeze(0).unsqueeze(0)
# print("POST PROCESSING\t", torch.unique(img_tensor))
corrupt_tensor = img_tensor * (1. - mask_tensor) + mask_tensor
print("DOUBLE CHECK:\t", corrupt_tensor.shape)
print("DOUBLE CHECK:\t", img_tensor.shape)
print("DOUBLE CHECK:\t", mask_tensor.shape)
f = time.time()
xs, _ = i2sb_model.ddpm_sampling(
ckpt_opt, img_tensor, mask=mask_tensor, cond=None, clip_denoise=i2sb_opt.clip_denoise, nfe=nfe, verbose=i2sb_opt.n_gpu_per_node == 1)
recon_img = xs[:, 0, ...].to(i2sb_opt.device)
# tu.save_image((recon_img+1)/2, "output.png")
# tu.save_image((corrupt_tensor+1)/2, "output.png")
print(recon_img.shape)
return transforms.ToPILImage()(((recon_img+1)/2)[0]), transforms.ToPILImage()(((corrupt_tensor+1)/2)[0])
def forward_segformer(img):
img_np = np.array(img)
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
result = inference_segmentor(segformer_model, img_np)
return np.asarray(result[0], dtype=np.uint8)
# visualization
def draw_selected_mask(mask, draw):
color = (255, 0, 0, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def draw_object_mask(mask, draw):
color = (0, 0, 255, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def create_title_image(word1, word2, word3, width, font_path='./assets/OpenSans-Bold.ttf'):
# Define the colors to use for each word
color_red = (255, 0, 0)
color_black = (0, 0, 0)
color_blue = (0, 0, 255)
# Define the initial font size and spacing between words
font_size = 40
# Create a new image with the specified width and white background
image = Image.new('RGB', (width, 60), (255, 255, 255))
try:
# Load the specified font
font = ImageFont.truetype(font_path, font_size)
# Keep increasing the font size until all words fit within the desired width
while True:
# Create a draw object for the image
draw = ImageDraw.Draw(image)
word_spacing = font_size / 2
# Draw each word in the appropriate color
x_offset = word_spacing
draw.text((x_offset, 0), word1, color_red, font=font)
x_offset += font.getsize(word1)[0] + word_spacing
draw.text((x_offset, 0), word2, color_black, font=font)
x_offset += font.getsize(word2)[0] + word_spacing
draw.text((x_offset, 0), word3, color_blue, font=font)
word_sizes = [font.getsize(word) for word in [word1, word2, word3]]
total_width = sum([size[0] for size in word_sizes]) + word_spacing * 3
# Stop increasing font size if the image is within the desired width
if total_width <= width:
break
# Increase font size and reset the draw object
font_size -= 1
image = Image.new('RGB', (width, 50), (255, 255, 255))
font = ImageFont.truetype(font_path, font_size)
draw = None
except Exception as e:
pass
return image
def concatenate_images_vertical(image1, image2):
# Get the dimensions of the two images
width1, height1 = image1.size
width2, height2 = image2.size
# Create a new image with the combined height and the maximum width
new_image = Image.new('RGBA', (max(width1, width2), height1 + height2))
# Paste the first image at the top of the new image
new_image.paste(image1, (0, 0))
# Paste the second image below the first image
new_image.paste(image2, (0, height1))
return new_image
mask_source_draw = "draw a mask on input image"
mask_source_segment = "upload a mask"
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
def run_anything_task(input_image, input_points, origin_image, task_type,
mask_source_radio, segmentation_radio, dilation_mask_extend):
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
print("HERE................", task_type)
if input_image is None:
return [], gr.Gallery.update(label='Please upload a image!ππππ'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !=''))
file_temp = int(time.time())
logger.info(f'run_anything_task_002/{device}_[{file_temp}]_{task_type}/[{mask_source_radio}]_1_')
output_images = []
# load image
if isinstance(input_image, dict):
image_pil, image = load_image(input_image['image'].convert("RGB"))
input_img = input_image['image']
output_images.append(input_image['image'])
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
else:
image_pil, image = load_image(input_image.convert("RGB"))
input_img = input_image
output_images.append(input_image)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
size = image_pil.size
H, W = size[1], size[0]
# run grounding dino model
if (task_type in ['inpainting', 'outpainting'] or task_type == 'remove') and mask_source_radio == mask_source_draw:
pass
else:
groundingdino_device = 'cpu'
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_')
if task_type == 'segment' or task_type == 'pipeline':
image = np.array(origin_image)
if segmentation_radio == "SAM":
if sam_predictor:
sam_predictor.set_image(image)
if sam_predictor:
logger.info(f"Forward with: {input_points}")
masks, _, _, _ = sam_predictor.predict(
point_coords = np.array(input_points),
point_labels = np.array([1 for _ in range(len(input_points))]),
# boxes = transformed_boxes,
multimask_output = False,
)
# masks: [9, 1, 512, 512]
assert sam_checkpoint, 'sam_checkpoint is not found!'
else:
run_mode = "rectangle"
# draw output image
plt.figure(figsize=(10, 10))
plt.imshow(origin_image)
for mask in masks:
show_mask(mask, plt.gca(), random_color=True)
# for box, label in zip(boxes_filt, pred_phrases):
# show_box(box.cpu().numpy(), plt.gca(), label)
plt.axis('off')
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
plt.savefig(image_path, bbox_inches="tight")
plt.clf()
plt.close('all')
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
os.remove(image_path)
else:
masks = forward_segformer(image)
segment_image_result = visualize_result_pyplot(segformer_model, image, masks, get_palette("wtm"), dilation=dilation_mask_extend)# if task_type == "pipeline" else None)
output_images.append(Image.fromarray(segment_image_result))
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
if task_type == 'detection' or task_type == 'segment':
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
return output_images, gr.Gallery.update(label='result images'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !=''))
elif task_type in ['inpainting', 'outpainting'] or task_type == 'pipeline':
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_4_')
if task_type == "pipeline":
if segmentation_radio == "SAM":
masks_ori = copy.deepcopy(masks)
print(masks.shape)
# masks = torch.where(masks > 0, True, False)
mask = masks[0]
mask_pil = Image.fromarray(mask)
mask = np.where(mask == True, 1, 0)
else:
mask = masks
save_mask = copy.deepcopy(mask)
save_mask = np.where(mask > 0, 255, 0).astype(np.uint8)
print((save_mask.dtype))
mask_pil = Image.fromarray(save_mask)
else:
if mask_source_radio == mask_source_draw:
input_mask_pil = input_image['mask']
input_mask = np.array(input_mask_pil.convert("L"))
mask_pil = input_mask_pil
mask = input_mask
else:
pass
# masks_ori = copy.deepcopy(masks)
# masks = torch.where(masks > 0, True, False)
# mask = masks[0][0].cpu().numpy()
# mask_pil = Image.fromarray(mask)
output_images.append(mask_pil.convert("RGB"))
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
if task_type in ['inpainting', 'pipeline']:
# image_inpainting = sd_model(prompt = "", image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0]
# input_img.save("test.png")
w, h = input_img.size
input_img = input_img.resize((256,256))
image_inpainting, corrupted = forward_i2sb(input_img, mask, dilation_mask_extend)
input_img = input_img.resize((w,h))
corrupted = corrupted.resize((w,h))
image_inpainting = image_inpainting.resize((w,h))
# print("RESULT\t", np.array(image_inpainting))
else:
# remove from mask
aasds = 1
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_6_')
if image_inpainting is None:
logger.info(f'run_anything_task_failed_')
return None, None, None, None
# output_images.append(image_inpainting)
# run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_7_')
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
output_images.append(corrupted)
output_images.append(image_inpainting)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
return output_images, gr.Gallery.update(label='result images'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !=''))
else:
logger.info(f"task_type:{task_type} error!")
logger.info(f'run_anything_task_[{file_temp}]_9_9_')
return output_images, gr.Gallery.update(label='result images'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !=''))
def change_radio_display(task_type, mask_source_radio, orig_img):
mask_source_radio_visible = False
num_relation_visible = False
image_gallery_visible = True
kosmos_input_visible = False
kosmos_output_visible = False
kosmos_text_output_visible = False
print(task_type)
if task_type == "Kosmos-2":
if kosmos_enable:
image_gallery_visible = False
kosmos_input_visible = True
kosmos_output_visible = True
kosmos_text_output_visible = True
if task_type in ['inpainting', 'outpainting'] or task_type == "remove":
mask_source_radio_visible = True
if task_type == "relate anything":
num_relation_visible = True
if task_type == "inpainting":
ret = gr.Image(value = orig_img, elem_id="image_upload", type='pil', label="Upload", height=512, tool = "sketch", brush_color='#00FFFF', mask_opacity=0.6)
elif task_type in ["segment", "pipeline"]:
ret = gr.Image(value= orig_img, elem_id="image_upload", type='pil', label="Upload", height=512, tool = "editor")# tool = "sketch", brush_color='#00FFFF', mask_opacity=0.6)
return (gr.Radio.update(visible=mask_source_radio_visible),
gr.Slider.update(visible=num_relation_visible),
gr.Gallery.update(visible=image_gallery_visible),
gr.Radio(["SegFormer", "SAM"], value="SAM", label="Segementation Model", visible= task_type != "inpainting"),
gr.Textbox(label="Dilation kernel size", value='7', visible= task_type == "pipeline"),
ret, [],
gr.Button("Undo point", visible = task_type != "inpainting"),
gr.Button("Clear point", visible = task_type != "inpainting"),)
def get_model_device(module):
try:
if module is None:
return 'None'
if isinstance(module, torch.nn.DataParallel):
module = module.module
for submodule in module.children():
if hasattr(submodule, "_parameters"):
parameters = submodule._parameters
if "weight" in parameters:
return parameters["weight"].device
return 'UnKnown'
except Exception as e:
return 'Error'
def click_callback(coords):
print("Clicked at here: ", coords)
def main_gradio(args):
block = gr.Blocks(
title="Thesis-Demo",
# theme="shivi/calm_seafoam@>=0.0.1,<1.0.0",
)
with block:
with gr.Row():
with gr.Column():
selected_points = gr.State([])
original_image = gr.State(None)
task_types = ["segment"]
if inpainting_enable:
task_types.append("inpainting")
task_types.append("pipeline")
input_image = gr.Image(elem_id="image_upload", type='pil', label="Upload", height=512)
input_image.upload(
store_img,
[input_image],
[original_image, selected_points]
)
input_image.select(
get_point,
[input_image, selected_points],
[input_image]
)
with gr.Row():
with gr.Column():
undo_point_button = gr.Button("Undo point", visible= True if original_image is not None else False)
undo_point_button.click(
fn= undo_button,
inputs=[original_image, selected_points],
outputs=[input_image]
)
with gr.Column():
clear_point_button = gr.Button("Clear point", visible= True if original_image is not None else False)
clear_point_button.click(
fn= clear_button,
inputs=[original_image],
outputs=[input_image, selected_points]
)
print(dir(input_image))
task_type = gr.Radio(task_types, value="segment",
label='Task type', visible=True)
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
value=mask_source_draw, label="Mask from",
visible=False)
segmentation_radio = gr.Radio(["SegFormer", "SAM"],
value="SAM", label="Segementation Model",
visible=True)
dilation_mask_extend = gr.Textbox(label="Dilation kernel size", value='5', visible=False)
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False)
run_button = gr.Button(label="Run", visible=True)
# with gr.Accordion("Advanced options", open=False) as advanced_options:
# box_threshold = gr.Slider(
# label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
# )
# text_threshold = gr.Slider(
# label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
# )
# iou_threshold = gr.Slider(
# label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
# )
# inpaint_mode = gr.Radio(["merge", "first"], value="merge", label="inpaint_mode")
# with gr.Row():
# with gr.Column(scale=1):
# remove_mode = gr.Radio(["segment", "rectangle"], value="segment", label='remove mode')
# with gr.Column(scale=1):
# remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10')
with gr.Column():
image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", height=512, visible=True
).style(preview=True, columns=[5], object_fit="scale-down", height=512)
time_cost = gr.Textbox(label="Time cost by step (ms):", visible=False, interactive=False)
run_button.click(fn=run_anything_task, inputs=[
input_image, selected_points, original_image, task_type,
mask_source_radio, segmentation_radio, dilation_mask_extend],
outputs=[image_gallery, image_gallery, time_cost, time_cost], show_progress=True, queue=True)
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio, original_image],
outputs=[mask_source_radio, num_relation])
task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio, original_image],
outputs=[mask_source_radio, num_relation,
image_gallery, segmentation_radio, dilation_mask_extend, input_image, selected_points, undo_point_button, clear_point_button
])
# DESCRIPTION = f'### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>'
# if lama_cleaner_enable:
# DESCRIPTION += f'Remove(cleaner) from [lama-cleaner](https://github.com/Sanster/lama-cleaner). <br>'
# if kosmos_enable:
# DESCRIPTION += f'Kosmos-2 from [Kosmos-2](https://github.com/microsoft/unilm/tree/master/kosmos-2). <br>'
# if ram_enable:
# DESCRIPTION += f'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>'
# DESCRIPTION += f'Thanks for their excellent work.'
# DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. \
# <a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
# gr.Markdown(DESCRIPTION)
print(f'device = {device}')
print(f'torch.cuda.is_available = {torch.cuda.is_available()}')
computer_info()
block.queue(max_size=10, api_open=False)
block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
parser.add_argument("--port", "-p", type=int, default=7860, help="port")
parser.add_argument("--cuda", "-c", type=str, default='cuda:0', help="cuda")
args, _ = parser.parse_known_args()
print(f'args = {args}')
# if os.environ.get('IS_MY_DEBUG') is None:
# os.system("pip list")
set_device(args)
if device == 'cpu':
kosmos_enable = False
# if kosmos_enable:
# kosmos_model, kosmos_processor = load_kosmos_model(device)
# if groundingdino_enable:
# load_groundingdino_model('cpu')
if sam_enable:
load_sam_model(device)
load_segformer(device)
if inpainting_enable:
load_sd_model(device)
load_i2sb_model()
# if lama_cleaner_enable:
# load_lama_cleaner_model(device)
# if ram_enable:
# load_ram_model(device)
# if os.environ.get('IS_MY_DEBUG') is None:
# os.system("pip list")
main_gradio(args)
|