Thesis-Demo / ram_utils.py
xuan2k's picture
Dev demo app
f8f5cdf
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torch.nn.functional as F
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, num_classes, dropout_prob=0.1):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout_prob)
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.dropout(out)
out = self.fc2(out)
return out
def show_anns(anns, color_code='auto'):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
polygons = []
color = []
for ann in sorted_anns:
m = ann['segmentation']
img = np.ones((m.shape[0], m.shape[1], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
if color_code == 'auto':
for i in range(3):
img[:,:,i] = color_mask[i]
elif color_code == 'red':
for i in range(3):
img[:,:,0] = 1
img[:,:,1] = 0
img[:,:,2] = 0
else:
for i in range(3):
img[:,:,0] = 0
img[:,:,1] = 0
img[:,:,2] = 1
return np.dstack((img, m*0.35))
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*',
s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*',
s=marker_size, edgecolor='white', linewidth=1.25)
def ram_show_mask(m):
img = np.ones((m.shape[0], m.shape[1], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:,:,0] = 1
img[:,:,1] = 0
img[:,:,2] = 0
return np.dstack((img, m*0.35))
def iou(mask1, mask2):
intersection = np.logical_and(mask1, mask2)
union = np.logical_or(mask1, mask2)
iou_score = np.sum(intersection) / np.sum(union)
return iou_score
def sort_and_deduplicate(sam_masks, iou_threshold=0.8):
# Sort the sam_masks list based on the area value
sorted_masks = sorted(sam_masks, key=lambda x: x['area'], reverse=True)
# Deduplicate masks based on the given iou_threshold
filtered_masks = []
for mask in sorted_masks:
duplicate = False
for filtered_mask in filtered_masks:
if iou(mask['segmentation'], filtered_mask['segmentation']) > iou_threshold:
duplicate = True
break
if not duplicate:
filtered_masks.append(mask)
return filtered_masks
relation_classes = ['over',
'in front of',
'beside',
'on',
'in',
'attached to',
'hanging from',
'on back of',
'falling off',
'going down',
'painted on',
'walking on',
'running on',
'crossing',
'standing on',
'lying on',
'sitting on',
'flying over',
'jumping over',
'jumping from',
'wearing',
'holding',
'carrying',
'looking at',
'guiding',
'kissing',
'eating',
'drinking',
'feeding',
'biting',
'catching',
'picking',
'playing with',
'chasing',
'climbing',
'cleaning',
'playing',
'touching',
'pushing',
'pulling',
'opening',
'cooking',
'talking to',
'throwing',
'slicing',
'driving',
'riding',
'parked on',
'driving on',
'about to hit',
'kicking',
'swinging',
'entering',
'exiting',
'enclosing',
'leaning on',]