Spaces:
Runtime error
Runtime error
// adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_kernel_256.cu | |
__device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) { | |
unsigned int *address_as_ui = reinterpret_cast<unsigned int *>(reinterpret_cast<char *>(address) - (reinterpret_cast<size_t>(address) & 2)); | |
unsigned int old = *address_as_ui; | |
unsigned int assumed; | |
do { | |
assumed = old; | |
unsigned short hsum = reinterpret_cast<size_t>(address) & 2 ? (old >> 16) : (old & 0xffff); | |
hsum += val; | |
old = reinterpret_cast<size_t>(address) & 2 | |
? (old & 0xffff) | (hsum << 16) | |
: (old & 0xffff0000) | hsum; | |
old = atomicCAS(address_as_ui, assumed, old); | |
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN) | |
} while (assumed != old); | |
} | |
__device__ __forceinline__ void atomicAdd(__half* address, c10::Half val) { | |
unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2)); | |
unsigned int old = *address_as_ui; | |
unsigned int assumed; | |
do { | |
assumed = old; | |
__half_raw hsum; | |
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff); | |
half tmpres = __hadd(hsum, val); | |
hsum = __half_raw(tmpres); | |
old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x; | |
old = atomicCAS(address_as_ui, assumed, old); | |
} while (assumed != old); | |
} | |
template <typename scalar_t> | |
__global__ void VecQuant8MatMulKernel( | |
const scalar_t* __restrict__ vec, | |
const int* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const int* __restrict__ zeros, | |
const int* __restrict__ g_idx, | |
int batch, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
); | |
template <typename scalar_t> | |
__global__ void VecQuant8BatchMatMulColumnCompressionKernel( | |
const scalar_t* __restrict__ vec, | |
const int* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const int* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
); | |
template <typename scalar_t> | |
__global__ void VecQuant4BatchMatMulColumnCompressionKernel( | |
const scalar_t* __restrict__ vec, | |
const int* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const int* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
); | |
template <typename scalar_t> | |
__global__ void VecQuant8BatchMatMulKernel( | |
const scalar_t* __restrict__ vec, | |
const int* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const int* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
); | |
template <typename scalar_t> | |
__global__ void VecQuant4BatchMatMulKernel( | |
const scalar_t* __restrict__ vec, | |
const int* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const int* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
); | |
template <typename scalar_t> | |
__global__ void VecQuant8BatchMatMulKernel_old( | |
const scalar_t* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const scalar_t* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
); | |
__global__ void VecQuant8BatchMatMulKernel_faster( | |
const half* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
half* __restrict__ mul, | |
const half* __restrict__ scales, | |
const half* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
); | |
__global__ void VecQuant8BatchMatMulKernel_faster_old( | |
const half* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
half* __restrict__ mul, | |
const half* __restrict__ scales, | |
const half* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width | |
); | |
template <typename scalar_t> | |
__global__ void VecQuant4BatchMatMulKernel_old( | |
const scalar_t* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const scalar_t* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
); | |
template <typename scalar_t> | |
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_old( | |
const scalar_t* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const scalar_t* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
); | |
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster( | |
const half* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
half* __restrict__ mul, | |
const half* __restrict__ scales, | |
const half* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
); | |
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old( | |
const half* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
half* __restrict__ mul, | |
const half* __restrict__ scales, | |
const half* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
); | |
template <typename scalar_t> | |
__global__ void VecQuant4BatchMatMulColumnCompressionKernel_old( | |
const scalar_t* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const scalar_t* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
); | |
__global__ void VecQuant8BatchMatMulKernel_faster( | |
const half* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
half* __restrict__ mul, | |
const half* __restrict__ scales, | |
const half* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width | |
); | |
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster( | |
const half* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
half* __restrict__ mul, | |
const half* __restrict__ scales, | |
const half* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
); | |
const int BLOCKWIDTH = 128; | |
const int BLOCKHEIGHT8 = 32; | |
const int BLOCKHEIGHT4 = 16; | |
const int BLOCKHEIGHT_OLD4 = 128; | |
//const int BLOCKHEIGHT_OLD8 = 128; | |
__device__ inline unsigned int as_unsigned(int i) { | |
return *reinterpret_cast<unsigned int*>(&i); | |
} | |
__device__ inline int as_int(int i) { | |
return *reinterpret_cast<int*>(&i); | |
} | |
void vecquant8matmul_batched_column_compression_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int height = vec.size(3); | |
int width = mat.size(3) * 4; | |
dim3 blocks( | |
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
AT_DISPATCH_FLOATING_TYPES( | |
vec.type(), "vecquant8matmul_batched_cuda", ([&] { | |
VecQuant8BatchMatMulColumnCompressionKernel<<<blocks, threads>>>( | |
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(), | |
scales.data<scalar_t>(), zeros.data<int>(), | |
batch, heads, vec_row, height, width | |
); | |
}) | |
); | |
} | |
template <typename scalar_t> | |
__global__ void VecQuant8BatchMatMulColumnCompressionKernel( | |
const scalar_t* __restrict__ vec, | |
const int* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const int* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
) { | |
int weight_total = batch * heads * height * width / 4; | |
int input_total = batch * heads * vec_row * height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
// h is index of height with step being BLOCKWIDTH | |
int h = BLOCKWIDTH * blockIdx.x; | |
// w is index of width with step being 1 | |
int w = BLOCKWIDTH * blockIdx.y + tid; | |
if (w >= width && tid >= height) { | |
return; | |
} | |
__shared__ scalar_t blockvec[BLOCKWIDTH]; | |
int k; | |
scalar_t w_tmp; | |
float weight[BLOCKWIDTH]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ | |
int i_w = (w / 4); | |
int w_bit = (w % 4) * 8; | |
int w_index = (batch_shift * height + h + k) * width / 4 + i_w; | |
if (w_index >= weight_total || w >= width) { | |
weight[k] = 0; | |
} else { | |
scalar_t scale = scales[batch_shift * height + h + k]; | |
scalar_t zero = zeros[batch_shift * height + h + k]; | |
w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xFF); | |
weight[k] = scale * (w_tmp - zero); | |
} | |
} | |
scalar_t res; | |
for (int vr = 0; vr < vec_row; ++vr){ | |
res = 0; | |
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; | |
if (vec_index < input_total) { | |
blockvec[tid] = vec[vec_index]; | |
} else { | |
blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ | |
// res is the dot product of BLOCKWIDTH elements (part of width) | |
res += weight[k] * blockvec[k]; | |
} | |
// add res to the final result, final matrix shape: (batch, vec_row, width) | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (out_index < out_total) { | |
atomicAdd(&mul[out_index], res); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant8matmul_batched_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int vec_height = vec.size(3); | |
int height = mat.size(2); | |
int width = mat.size(3); | |
int zero_width = zeros.size(2); | |
dim3 blocks( | |
(height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
AT_DISPATCH_FLOATING_TYPES( | |
vec.type(), "vecquant8matmul_batched_cuda", ([&] { | |
VecQuant8BatchMatMulKernel<<<blocks, threads>>>( | |
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(), | |
scales.data<scalar_t>(), zeros.data<int>(), | |
batch, heads, vec_row, vec_height, height, width, zero_width | |
); | |
}) | |
); | |
} | |
template <typename scalar_t> | |
__global__ void VecQuant8BatchMatMulKernel( | |
const scalar_t* __restrict__ vec, | |
const int* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const int* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
) { | |
int weight_total = batch * heads * height * width; | |
int input_total = batch * heads * vec_row * vec_height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
// h is index of height with step being BLOCKHEIGHT8 | |
int h = BLOCKHEIGHT8 * blockIdx.x; | |
// w is index of width with step being 1 | |
int w = BLOCKWIDTH * blockIdx.y + tid; | |
if (w >= width && tid >= vec_height) { | |
return; | |
} | |
__shared__ scalar_t blockvec[BLOCKWIDTH]; | |
// i is index of mat of block first row | |
int i = width * h + w; | |
// if (i >= width * height) { | |
// return; | |
// } | |
int k; | |
scalar_t w_tmp; | |
int z_w = w / 4; | |
int z_mod = (w % 4) * 8; | |
float weight[BLOCKWIDTH]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){ | |
int k_w = (k / 4); | |
int k_bit = (k % 4) * 8; | |
int w_index = batch_shift * height * width + i + (k_w * width); | |
if (w_index >= weight_total || w >= width) { | |
weight[k] = 0; | |
} else { | |
scalar_t scale = scales[batch_shift * width + w]; | |
scalar_t zero; | |
if (zero_width == width) { | |
zero = zeros[batch_shift * width + w]; | |
} else { | |
zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xFF) + 1); | |
} | |
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xFF); | |
weight[k] = scale * (w_tmp - zero); | |
} | |
} | |
scalar_t res; | |
for (int vr = 0; vr < vec_row; ++vr){ | |
res = 0; | |
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid; | |
if (vec_index < input_total) { | |
blockvec[tid] = vec[vec_index]; | |
} else { | |
blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){ | |
// res is the dot product of BLOCKWIDTH elements (part of width) | |
res += weight[k] * blockvec[k]; | |
} | |
// add res to the final result, final matrix shape: (batch, vec_row, width) | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (out_index < out_total) { | |
atomicAdd(&mul[out_index], res); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant8matmul_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros, | |
torch::Tensor g_idx | |
) { | |
int batch = vec.size(0); | |
int vec_height = vec.size(1); | |
int height = mat.size(0); | |
int width = mat.size(1); | |
int zero_width = zeros.size(1); | |
dim3 blocks( | |
(height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
AT_DISPATCH_FLOATING_TYPES( | |
vec.type(), "vecquant8matmul_cuda", ([&] { | |
VecQuant8MatMulKernel<<<blocks, threads>>>( | |
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(), | |
scales.data<scalar_t>(), zeros.data<int>(), g_idx.data<int>(), | |
batch, vec_height, height, width, zero_width | |
); | |
}) | |
); | |
} | |
template <typename scalar_t> | |
__global__ void VecQuant8MatMulKernel( | |
const scalar_t* __restrict__ vec, | |
const int* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const int* __restrict__ zeros, | |
const int* __restrict__ g_idx, | |
int batch, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
) { | |
int h = BLOCKHEIGHT8 * blockIdx.x; | |
int w = BLOCKWIDTH * blockIdx.y + threadIdx.x; | |
__shared__ scalar_t blockvec[BLOCKWIDTH]; | |
int i = width * h + w; | |
int g_h = h * 4; | |
int k; | |
unsigned int g; | |
scalar_t w_tmp; | |
int z_w = w / 4; | |
int z_mod = (w % 4) * 8; | |
float weight[BLOCKWIDTH]; | |
for (k = 0; k < BLOCKWIDTH; ++k){ | |
int k_w = (k / 4); | |
int k_bit = (k % 4) * 8; | |
g = as_int(g_idx[g_h + k]); | |
scalar_t scale = scales[g * width + w]; | |
scalar_t zero = scalar_t(((as_unsigned(zeros[g * zero_width + z_w]) >> z_mod) & 0xFF) + 1); | |
w_tmp = ((as_unsigned(mat[i + (k_w * width)]) >> k_bit) & 0xFF); | |
weight[k] = scale * (w_tmp - zero); | |
} | |
scalar_t res; | |
for (int b = 0; b < batch; ++b){ | |
res = 0; | |
blockvec[threadIdx.x] = vec[b * vec_height + blockIdx.x * BLOCKWIDTH + threadIdx.x]; | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH; ++k){ | |
res += weight[k] * blockvec[k]; | |
} | |
atomicAdd(&mul[b * width + w], res); | |
__syncthreads(); | |
} | |
} | |
void vecquant4matmul_batched_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int vec_height = vec.size(3); | |
int height = mat.size(2); | |
int width = mat.size(3); | |
int zero_width = zeros.size(2); | |
dim3 blocks( | |
(height + BLOCKHEIGHT4 - 1) / BLOCKHEIGHT4, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
AT_DISPATCH_FLOATING_TYPES( | |
vec.type(), "vecquant4matmul_batched_cuda", ([&] { | |
VecQuant4BatchMatMulKernel<<<blocks, threads>>>( | |
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(), | |
scales.data<scalar_t>(), zeros.data<int>(), | |
batch, heads, vec_row, vec_height, height, width, zero_width | |
); | |
}) | |
); | |
} | |
template <typename scalar_t> | |
__global__ void VecQuant4BatchMatMulKernel( | |
const scalar_t* __restrict__ vec, | |
const int* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const int* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
) { | |
int weight_total = batch * heads * height * width; | |
int input_total = batch * heads * vec_row * vec_height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
// h is index of height with step being BLOCKHEIGHT4 | |
int h = BLOCKHEIGHT4 * blockIdx.x; | |
// w is index of width with step being 1 | |
int w = BLOCKWIDTH * blockIdx.y + tid; | |
if (w >= width && tid >= vec_height) { | |
return; | |
} | |
__shared__ scalar_t blockvec[BLOCKWIDTH]; | |
// i is index of mat of block first row | |
int i = width * h + w; | |
int k; | |
scalar_t w_tmp; | |
int z_w = w / 8; | |
int z_mod = (w % 8) * 4; | |
float weight[BLOCKWIDTH]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){ | |
int k_w = (k / 8); | |
int k_bit = (k % 8) * 4; | |
int w_index = batch_shift * height * width + i + (k_w * width); | |
if (w_index >= weight_total || w >= width) { | |
weight[k] = 0; | |
} else { | |
scalar_t scale = scales[batch_shift * width + w]; | |
scalar_t zero; | |
if (zero_width == width) { | |
zero = zeros[batch_shift * width + w]; | |
} else { | |
zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xF)); | |
} | |
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF); | |
weight[k] = scale * (w_tmp - zero); | |
} | |
} | |
scalar_t res; | |
for (int vr = 0; vr < vec_row; ++vr){ | |
res = 0; | |
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid; | |
if (vec_index < input_total) { | |
blockvec[tid] = vec[vec_index]; | |
} else { | |
blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){ | |
// res is the dot product of BLOCKWIDTH elements (part of width) | |
res += weight[k] * blockvec[k]; | |
} | |
// add res to the final result, final matrix shape: (batch, vec_row, width) | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (out_index < out_total) { | |
atomicAdd(&mul[out_index], res); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant4matmul_batched_column_compression_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int height = vec.size(3); | |
int width = mat.size(3) * 8; | |
dim3 blocks( | |
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
AT_DISPATCH_FLOATING_TYPES( | |
vec.type(), "vecquant4matmul_batched_cuda", ([&] { | |
VecQuant4BatchMatMulColumnCompressionKernel<<<blocks, threads>>>( | |
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(), | |
scales.data<scalar_t>(), zeros.data<int>(), | |
batch, heads, vec_row, height, width | |
); | |
}) | |
); | |
} | |
template <typename scalar_t> | |
__global__ void VecQuant4BatchMatMulColumnCompressionKernel( | |
const scalar_t* __restrict__ vec, | |
const int* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const int* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
) { | |
int weight_total = batch * heads * height * width / 8; | |
int input_total = batch * heads * vec_row * height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
// h is index of height with step being BLOCKWIDTH | |
int h = BLOCKWIDTH * blockIdx.x; | |
// w is index of width with step being 1 | |
int w = BLOCKWIDTH * blockIdx.y + tid; | |
if (w >= width && tid >= height) { | |
return; | |
} | |
__shared__ scalar_t blockvec[BLOCKWIDTH]; | |
int k; | |
scalar_t w_tmp; | |
float weight[BLOCKWIDTH]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ | |
int i_w = (w / 8); | |
int w_bit = (w % 8) * 4; | |
int w_index = (batch_shift * height + h + k) * width / 8 + i_w; | |
if (w_index >= weight_total || w >= width) { | |
weight[k] = 0; | |
} else { | |
scalar_t scale = scales[batch_shift * height + h + k]; | |
scalar_t zero = zeros[batch_shift * height + h + k]; | |
w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xF); | |
weight[k] = scale * (w_tmp - zero); | |
} | |
} | |
scalar_t res; | |
for (int vr = 0; vr < vec_row; ++vr){ | |
res = 0; | |
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; | |
if (vec_index < input_total) { | |
blockvec[tid] = vec[vec_index]; | |
} else { | |
blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ | |
// res is the dot product of BLOCKWIDTH elements (part of width) | |
res += weight[k] * blockvec[k]; | |
} | |
// add res to the final result, final matrix shape: (batch, vec_row, width) | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (out_index < out_total) { | |
atomicAdd(&mul[out_index], res); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant8matmul_batched_old_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int vec_height = vec.size(3); | |
int height = mat.size(2); | |
int width = mat.size(3); | |
int zero_width = zeros.size(2); | |
dim3 blocks( | |
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
AT_DISPATCH_FLOATING_TYPES( | |
vec.type(), "vecquant8matmul_batched_old_cuda", ([&] { | |
VecQuant8BatchMatMulKernel_old<<<blocks, threads>>>( | |
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(), | |
scales.data<scalar_t>(), zeros.data<scalar_t>(), | |
batch, heads, vec_row, vec_height, height, width, zero_width | |
); | |
}) | |
); | |
} | |
template <typename scalar_t> | |
__global__ void VecQuant8BatchMatMulKernel_old( | |
const scalar_t* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const scalar_t* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
) { | |
int weight_total = batch * heads * height * width; | |
int input_total = batch * heads * vec_row * vec_height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
// h is index of height with step being BLOCKHEIGHT8 | |
int h = BLOCKWIDTH * blockIdx.x; | |
// w is index of width with step being 1 | |
int w = BLOCKWIDTH * blockIdx.y + tid; | |
if (w >= width && tid >= vec_height) { | |
return; | |
} | |
__shared__ scalar_t blockvec[BLOCKWIDTH]; | |
// i is index of mat of block first row | |
int i = width * h + w; | |
int k; | |
scalar_t w_tmp; | |
float weight[BLOCKWIDTH]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){ | |
int k_w = k; | |
int w_index = batch_shift * height * width + i + (k_w * width); | |
if (w_index >= weight_total || w >= width) { | |
weight[k] = 0; | |
} else { | |
scalar_t scale = scales[batch_shift * width + w]; | |
scalar_t zero = zeros[batch_shift * width + w]; | |
w_tmp = as_unsigned(mat[w_index]); | |
weight[k] = scale * (w_tmp - zero); | |
} | |
} | |
scalar_t res; | |
for (int vr = 0; vr < vec_row; ++vr){ | |
res = 0; | |
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid; | |
if (vec_index < input_total) { | |
blockvec[tid] = vec[vec_index]; | |
} else { | |
blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){ | |
// res is the dot product of BLOCKWIDTH elements (part of width) | |
res += weight[k] * blockvec[k]; | |
} | |
// add res to the final result, final matrix shape: (batch, vec_row, width) | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (out_index < out_total) { | |
atomicAdd(&mul[out_index], res); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant8matmul_batched_faster_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int vec_height = vec.size(3); | |
int height = mat.size(2); | |
int width = mat.size(3); | |
int zero_width = zeros.size(2); | |
dim3 blocks( | |
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
VecQuant8BatchMatMulKernel_faster<<<blocks, threads>>>( | |
(half*) vec.data_ptr(), | |
(uint8_t*) mat.data_ptr(), | |
(half*) mul.data_ptr(), | |
(half*) scales.data_ptr(), | |
(half*) zeros.data_ptr(), | |
batch, heads, vec_row, vec_height, height, width, zero_width | |
); | |
} | |
__global__ void VecQuant8BatchMatMulKernel_faster( | |
const half* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
half* __restrict__ mul, | |
const half* __restrict__ scales, | |
const half* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
) { | |
//int weight_total = batch * heads * height * width; | |
int input_total = batch * heads * vec_row * vec_height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
int h = BLOCKWIDTH * blockIdx.x; | |
int w = BLOCKWIDTH * blockIdx.y + tid; | |
if (w >= width && tid >= height) { | |
return; | |
} | |
__shared__ float blockvec[BLOCKWIDTH]; | |
int i = width * h + w; | |
int k; | |
float w_tmp; | |
float weight[BLOCKWIDTH]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){ | |
int k_w = k; | |
int w_index = batch_shift * height * width + i + (k_w * width); | |
float scale = __half2float(scales[batch_shift * width + w]); | |
float zero = __half2float(zeros[batch_shift * width + w]); | |
w_tmp = as_unsigned(mat[w_index]); | |
weight[k] = scale *(w_tmp-zero); | |
} | |
float res; | |
for (int vr = 0; vr < vec_row; ++vr){ | |
res = 0; | |
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid; | |
if (vec_index < input_total) { | |
blockvec[tid] = __half2float(vec[vec_index]); | |
} else { | |
blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){ | |
float temp_res = weight[k]*blockvec[k]; | |
res += temp_res; | |
} | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (out_index < out_total) { | |
atomicAdd(&mul[out_index], __float2half(res)); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant8matmul_batched_column_compression_faster_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int height = vec.size(3); | |
int width = mat.size(3); | |
dim3 blocks( | |
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
VecQuant8BatchMatMulColumnCompressionKernel_faster<<<blocks, threads>>>( | |
(half*) vec.data_ptr(), | |
(uint8_t*) mat.data_ptr(), | |
(half*) mul.data_ptr(), | |
(half*) scales.data_ptr(), | |
(half*) zeros.data_ptr(), | |
batch, heads, vec_row, height, width | |
); | |
} | |
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster( | |
const half* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
half* __restrict__ mul, | |
const half* __restrict__ scales, | |
const half* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
) { | |
//int weight_total = batch * heads * height * width; | |
int input_total = batch * heads * vec_row * height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
int h = BLOCKWIDTH * blockIdx.x; | |
int w = BLOCKWIDTH * blockIdx.y + tid; | |
if (w >= width && tid >= height) { | |
return; | |
} | |
__shared__ float blockvec[BLOCKWIDTH]; | |
int k; | |
float w_tmp; | |
float weight[BLOCKWIDTH]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
for (k = 0; k < BLOCKWIDTH; ++k){ | |
int w_index = (batch_shift * height + h + k) * width + w; | |
float scale = __half2float(scales[batch_shift * height + h + k]); | |
float zero = __half2float(zeros[batch_shift * height + h + k]); | |
w_tmp = mat[w_index]; | |
weight[k] = scale * (w_tmp-zero); | |
} | |
float res; | |
for (int vr = 0; vr < vec_row; ++vr){ | |
res = 0; | |
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; | |
if (vec_index < input_total) { | |
blockvec[tid] = __half2float(vec[vec_index]); | |
} else { | |
blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH; ++k){ | |
res += weight[k]*blockvec[k]; | |
} | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (out_index < out_total) { | |
atomicAdd(&mul[out_index], __float2half(res)); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant8matmul_batched_column_compression_old_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int height = vec.size(3); | |
int width = mat.size(3); | |
dim3 blocks( | |
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
AT_DISPATCH_FLOATING_TYPES( | |
vec.type(), "vecquant8matmul_batched_column_compression_old_cuda", ([&] { | |
VecQuant8BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>( | |
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(), | |
scales.data<scalar_t>(), zeros.data<scalar_t>(), | |
batch, heads, vec_row, height, width | |
); | |
}) | |
); | |
} | |
template <typename scalar_t> | |
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_old( | |
const scalar_t* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const scalar_t* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
) { | |
int weight_total = batch * heads * height * width; | |
int input_total = batch * heads * vec_row * height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
// h is index of height with step being BLOCKWIDTH | |
int h = BLOCKWIDTH * blockIdx.x; | |
// w is index of width with step being 1 | |
int w = BLOCKWIDTH * blockIdx.y + tid; | |
if (w >= width && tid >= height) { | |
return; | |
} | |
__shared__ scalar_t blockvec[BLOCKWIDTH]; | |
int k; | |
scalar_t w_tmp; | |
float weight[BLOCKWIDTH]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ | |
int w_index = (batch_shift * height + h + k) * width + w; | |
if (w_index >= weight_total || w >= width) { | |
weight[k] = 0; | |
} else { | |
scalar_t scale = scales[batch_shift * height + h + k]; | |
scalar_t zero = zeros[batch_shift * height + h + k]; | |
w_tmp = mat[w_index]; | |
weight[k] = scale * (w_tmp - zero); | |
} | |
} | |
scalar_t res; | |
for (int vr = 0; vr < vec_row; ++vr){ | |
res = 0; | |
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; | |
if (vec_index < input_total) { | |
blockvec[tid] = vec[vec_index]; | |
} else { | |
blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ | |
// res is the dot product of BLOCKWIDTH elements (part of width) | |
res += weight[k] * blockvec[k]; | |
} | |
// add res to the final result, final matrix shape: (batch, vec_row, width) | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (out_index < out_total) { | |
atomicAdd(&mul[out_index], res); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant4matmul_batched_old_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int vec_height = vec.size(3); | |
int height = mat.size(2); | |
int width = mat.size(3); | |
int zero_width = zeros.size(2); | |
dim3 blocks( | |
(height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
AT_DISPATCH_FLOATING_TYPES( | |
vec.type(), "vecquant4matmul_batched_old_cuda", ([&] { | |
VecQuant4BatchMatMulKernel_old<<<blocks, threads>>>( | |
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(), | |
scales.data<scalar_t>(), zeros.data<scalar_t>(), | |
batch, heads, vec_row, vec_height, height, width, zero_width | |
); | |
}) | |
); | |
} | |
template <typename scalar_t> | |
__global__ void VecQuant4BatchMatMulKernel_old( | |
const scalar_t* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const scalar_t* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width, | |
int zero_width | |
) { | |
int weight_total = batch * heads * height * width; | |
int input_total = batch * heads * vec_row * vec_height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
// h is index of height with step being BLOCKHEIGHT_OLD4 | |
int h = BLOCKHEIGHT_OLD4 * blockIdx.x; | |
// w is index of width with step being 1 | |
int w = BLOCKWIDTH * blockIdx.y + tid; | |
if (w >= width && tid >= vec_height) { | |
return; | |
} | |
__shared__ scalar_t blockvec[BLOCKWIDTH]; | |
// i is index of mat of block first row | |
int i = width * h + w; | |
int k; | |
scalar_t w_tmp; | |
float weight[BLOCKWIDTH]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){ | |
int k_w = (k / 2); | |
int k_bit = (k % 2) * 4; | |
int w_index = batch_shift * height * width + i + (k_w * width); | |
if (w_index >= weight_total || w >= width) { | |
weight[k] = 0; | |
} else { | |
scalar_t scale = scales[batch_shift * width + w]; | |
scalar_t zero = zeros[batch_shift * width + w]; | |
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF); | |
weight[k] = scale * (w_tmp - zero); | |
} | |
} | |
scalar_t res; | |
for (int vr = 0; vr < vec_row; ++vr){ | |
res = 0; | |
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid; | |
if (vec_index < input_total) { | |
blockvec[tid] = vec[vec_index]; | |
} else { | |
blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){ | |
// res is the dot product of BLOCKWIDTH elements (part of width) | |
res += weight[k] * blockvec[k]; | |
} | |
// add res to the final result, final matrix shape: (batch, vec_row, width) | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (out_index < out_total) { | |
atomicAdd(&mul[out_index], res); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant4matmul_batched_column_compression_old_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int height = vec.size(3); | |
int width = mat.size(3); | |
dim3 blocks( | |
(height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
AT_DISPATCH_FLOATING_TYPES( | |
vec.type(), "vecquant4matmul_batched_column_compression_old_cuda", ([&] { | |
VecQuant4BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>( | |
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(), | |
scales.data<scalar_t>(), zeros.data<scalar_t>(), | |
batch, heads, vec_row, height, width | |
); | |
}) | |
); | |
} | |
template <typename scalar_t> | |
__global__ void VecQuant4BatchMatMulColumnCompressionKernel_old( | |
const scalar_t* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
scalar_t* __restrict__ mul, | |
const scalar_t* __restrict__ scales, | |
const scalar_t* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int height, | |
int width | |
) { | |
int weight_total = batch * heads * height * width; | |
int input_total = batch * heads * vec_row * height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
// h is index of height with step being BLOCKWIDTH | |
int h = BLOCKHEIGHT_OLD4 * blockIdx.x; | |
// w is index of width with step being 1 | |
int w = BLOCKWIDTH * blockIdx.y + tid; | |
if (w >= width && tid >= height) { | |
return; | |
} | |
__shared__ scalar_t blockvec[BLOCKWIDTH]; | |
int k; | |
scalar_t w_tmp; | |
float weight[BLOCKWIDTH]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){ | |
int k_w = (k / 2); | |
int k_bit = (k % 2) * 4; | |
int w_index = (batch_shift * height + h + k) * width + k_w; | |
if (w_index >= weight_total || w >= width) { | |
weight[k] = 0; | |
} else { | |
scalar_t scale = scales[batch_shift * height + h + k]; | |
scalar_t zero = zeros[batch_shift * height + h + k]; | |
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF); | |
weight[k] = scale * (w_tmp - zero); | |
} | |
} | |
scalar_t res; | |
for (int vr = 0; vr < vec_row; ++vr){ | |
res = 0; | |
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; | |
if (vec_index < input_total) { | |
blockvec[tid] = vec[vec_index]; | |
} else { | |
blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){ | |
// res is the dot product of BLOCKWIDTH elements (part of width) | |
res += weight[k] * blockvec[k]; | |
} | |
// add res to the final result, final matrix shape: (batch, vec_row, width) | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (out_index < out_total) { | |
atomicAdd(&mul[out_index], res); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant8matmul_batched_faster_old_cuda( | |
torch::Tensor vec, | |
torch::Tensor mat, | |
torch::Tensor mul, | |
torch::Tensor scales, | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); | |
int vec_height = vec.size(3); | |
int height = mat.size(2); | |
int width = mat.size(3); | |
dim3 blocks( | |
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
VecQuant8BatchMatMulKernel_faster_old<<<blocks, threads>>>( | |
(half*) vec.data_ptr(), | |
(uint8_t*) mat.data_ptr(), | |
(half*) mul.data_ptr(), | |
(half*) scales.data_ptr(), | |
(half*) zeros.data_ptr(), | |
batch, heads, vec_row, vec_height, height, width | |
); | |
} | |
__global__ void VecQuant8BatchMatMulKernel_faster_old( | |
const half* __restrict__ vec, | |
const uint8_t* __restrict__ mat, | |
half* __restrict__ mul, | |
const half* __restrict__ scales, | |
const half* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, | |
int vec_height, | |
int height, | |
int width | |
) { | |
int weight_total = batch * heads * height * width; | |
int input_total = batch * heads * vec_row * vec_height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
const int BLOCKWIDTH_half = BLOCKWIDTH/2; | |
int h = BLOCKWIDTH * blockIdx.x; //head_dim, dim=-1 | |
int w = BLOCKWIDTH * blockIdx.y + tid; //seq-len, +0-256 ,dim=-2 | |
/* | |
if (w >= width && tid >= vec_height) { | |
return; | |
} | |
*/ | |
__shared__ half blockvec[BLOCKWIDTH]; //256 | |
int i = width * h + w; | |
int k; | |
half w_tmp1 = __float2half(0); | |
half w_tmp2 = __float2half(0); | |
half2 weight[BLOCKWIDTH_half]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
//int zero_index = batch_shift; | |
for (k = 0; k < BLOCKWIDTH_half; ++k){ | |
int w_index1 = batch_shift * height * width + i + (2 * k * width); // [batch,head,h+k, w] | |
int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width); | |
int zero_index = batch_shift * width + w; // [batch,head, w] | |
if (w_index1 >= weight_total || w >= width || (2 * k + h) >= height) { | |
weight[k] = __float2half2_rn(0); | |
} else { | |
float zero_f=__half2float(zeros[zero_index]); | |
float scale_f= __half2float(scales[zero_index]); | |
if (w_index2 >= weight_total){ | |
w_tmp1 = __float2half((as_unsigned(mat[w_index1]) -zero_f)*scale_f); | |
w_tmp2 = __float2half(0); | |
weight[k] = __halves2half2(w_tmp1,w_tmp2); | |
//printf("zero_index is %d w is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,w,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k])); | |
}else{ | |
w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1])); | |
w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2])); | |
//weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero,zero)),__halves2half2(scale,scale)); | |
weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f))); | |
//printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k])); | |
} | |
} | |
} | |
for (int vr = 0; vr < vec_row; ++vr){ | |
float res=0; | |
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (vec_index < input_total) { | |
//blockvec[tid] = __half2float(vec[vec_index]);// [batch, head, vr, tid(seq_len dim+)] | |
blockvec[tid] = vec[vec_index]; | |
//printf("width is %d height is %d h is %d w is %d vec_index is %d out_index is %d vec_row is %d vec_height is %d,vr is %d tid is %d blockvec is %f\n",width,height, h,w,vec_index,out_index,vec_row,vec_height,vr,tid,blockvec[tid]); | |
} else { | |
blockvec[tid] = __float2half(0); | |
} | |
__syncthreads(); | |
if (out_index < out_total) { | |
for (k = 0; k < BLOCKWIDTH_half; ++k){ | |
half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1])); | |
res += __low2float(res2) + __high2float(res2); | |
} | |
atomicAdd(&mul[out_index], __float2half(res)); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |
void vecquant8matmul_batched_column_compression_faster_old_cuda( | |
torch::Tensor vec, // [batch,heads, seq_q, seq_v] | |
torch::Tensor mat, // [batch,heads, seq_v, head_dim] | |
torch::Tensor mul, // [batch,heads, seq_q,head_dim] | |
torch::Tensor scales, // [batch,heads, head_dim] | |
torch::Tensor zeros | |
) { | |
int batch = vec.size(0); | |
int heads = vec.size(1); | |
int vec_row = vec.size(2); //ql | |
int height = mat.size(2); //vl | |
int width = mat.size(3); //head_dim | |
dim3 blocks( | |
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, | |
(width + BLOCKWIDTH - 1) / BLOCKWIDTH | |
); | |
dim3 threads(BLOCKWIDTH); | |
VecQuant8BatchMatMulColumnCompressionKernel_faster_old<<<blocks, threads>>>( | |
(half*) vec.data_ptr(), | |
(uint8_t*) mat.data_ptr(), | |
(half*) mul.data_ptr(), | |
(half*) scales.data_ptr(), | |
(half*) zeros.data_ptr(), | |
batch, heads, vec_row, height, width | |
); | |
} | |
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old( | |
const half* __restrict__ vec, // [batch,heads, seq_q, seq_v] | |
const uint8_t* __restrict__ mat, // [batch,heads, seq_v, head_dim] | |
half* __restrict__ mul, // [batch,heads, seq_q,head_dim] | |
const half* __restrict__ scales, // [batch,heads, seq_v] | |
const half* __restrict__ zeros, | |
int batch, | |
int heads, | |
int vec_row, //seq_q | |
int height, //seq_v | |
int width //head_dim | |
) { | |
int weight_total = batch * heads * height * width; | |
int input_total = batch * heads * vec_row * height; | |
int out_total = batch * heads * vec_row * width; | |
int tid = threadIdx.x; | |
int h = BLOCKWIDTH * blockIdx.x; // vl | |
int w = BLOCKWIDTH * blockIdx.y + tid; //head_dim + block | |
if (w >= width && tid >= height) { | |
return; | |
} | |
__shared__ half blockvec[BLOCKWIDTH]; | |
int k; | |
half w_tmp1 = __float2half(0); | |
half w_tmp2 = __float2half(0); | |
int i = width * h + w; | |
const int BLOCKWIDTH_half = BLOCKWIDTH/2; | |
half2 weight[BLOCKWIDTH_half]; | |
for (int b = 0; b < batch; ++b){ | |
for (int head = 0; head < heads; ++head){ | |
int batch_shift = b * heads + head; | |
//int zero_index = batch_shift; | |
for (k = 0; k < BLOCKWIDTH_half; ++k){ | |
int w_index1 = batch_shift * height * width + i + (2 * k) * width; // [batch,head, h+k, w] | |
int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width); | |
int zero_index1 = batch_shift * height + h + 2*k; // [batch,head, w] | |
int zero_index2 = batch_shift * height + h + 2*k+1; // [batch,head, w] | |
if (w_index1 >= weight_total || (2 * k + h)>=height) { | |
weight[k]=__float2half2_rn(0); | |
} else{ | |
//int zero_index = batch_shift + h; // [batch,head, w] | |
//float scale_f1 = __half2float(scales[zero_index1]); | |
//float zero_f1 = __half2float(zeros[zero_index1]); | |
if (w_index2>=weight_total){ | |
w_tmp1 = __float2half((as_unsigned(mat[w_index1]) - __half2float(zeros[zero_index1]))* __half2float(scales[zero_index1])); | |
w_tmp2 = __float2half(0); | |
weight[k] = __halves2half2(w_tmp1,w_tmp2); | |
//printf("zero_index is %d k is %d w is %d head is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,k,w,head,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k])); | |
}else{ | |
w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1])); | |
w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2])); | |
half zero1=zeros[zero_index1]; | |
half zero2=zeros[zero_index2]; | |
half scale1=scales[zero_index1]; | |
half scale2=scales[zero_index2]; | |
weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero1,zero2)),__halves2half2(scale1,scale2)); | |
//weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f))); | |
//printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k])); | |
} | |
} | |
} | |
for (int vr = 0; vr < vec_row; ++vr){ | |
float res=0; | |
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; | |
int out_index = (batch_shift * vec_row + vr) * width + w; | |
if (vec_index < input_total) { | |
//blockvec[tid] = __half2float(vec[vec_index]); | |
blockvec[tid] = vec[vec_index]; | |
//printf("vec_index is %d out_index is %d vec_row is %d ,vr is %d tid is %d blockvec is %f\n",vec_index,out_index,vec_row,vr,tid,blockvec[tid]); | |
} else { | |
blockvec[tid] = __float2half(0); | |
//blockvec[tid] = 0; | |
} | |
__syncthreads(); | |
if (out_index < out_total) { | |
for (k = 0; k < BLOCKWIDTH_half; ++k){ | |
half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1])); | |
res += __low2float(res2) + __high2float(res2); | |
} | |
atomicAdd(&mul[out_index], __float2half(res)); | |
} | |
__syncthreads(); | |
} | |
} | |
} | |
} | |