Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
class CosyVoiceModel: | |
def __init__(self, | |
llm: torch.nn.Module, | |
flow: torch.nn.Module, | |
hift: torch.nn.Module): | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.llm = llm | |
self.flow = flow | |
self.hift = hift | |
def load(self, llm_model, flow_model, hift_model): | |
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device)) | |
self.llm.to(self.device).eval() | |
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device)) | |
self.flow.to(self.device).eval() | |
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device)) | |
self.hift.to(self.device).eval() | |
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192), | |
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32), | |
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32), | |
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32), | |
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)): | |
tts_speech_token = self.llm.inference(text=text.to(self.device), | |
text_len=text_len.to(self.device), | |
prompt_text=prompt_text.to(self.device), | |
prompt_text_len=prompt_text_len.to(self.device), | |
prompt_speech_token=llm_prompt_speech_token.to(self.device), | |
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device), | |
embedding=llm_embedding.to(self.device), | |
beam_size=1, | |
sampling=25, | |
max_token_text_ratio=30, | |
min_token_text_ratio=3) | |
tts_mel = self.flow.inference(token=tts_speech_token, | |
token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device), | |
prompt_token=flow_prompt_speech_token.to(self.device), | |
prompt_token_len=flow_prompt_speech_token_len.to(self.device), | |
prompt_feat=prompt_speech_feat.to(self.device), | |
prompt_feat_len=prompt_speech_feat_len.to(self.device), | |
embedding=flow_embedding.to(self.device)) | |
tts_speech = self.hift.inference(mel=tts_mel).cpu() | |
torch.cuda.empty_cache() | |
return {'tts_speech': tts_speech} | |
def text_to_token(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192), | |
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32), | |
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32), | |
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32), | |
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)): | |
tts_speech_token = self.llm.inference(text=text.to(self.device), | |
text_len=text_len.to(self.device), | |
prompt_text=prompt_text.to(self.device), | |
prompt_text_len=prompt_text_len.to(self.device), | |
prompt_speech_token=llm_prompt_speech_token.to(self.device), | |
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device), | |
embedding=llm_embedding.to(self.device), | |
beam_size=1, | |
sampling=25, | |
max_token_text_ratio=30, | |
min_token_text_ratio=3) | |
return tts_speech_token | |
def token_to_speech(self, tts_speech_token, flow_embedding, llm_embedding=torch.zeros(0, 192), | |
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32), | |
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32), | |
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32), | |
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)): | |
tts_mel = self.flow.inference(token=tts_speech_token, | |
token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device), | |
prompt_token=flow_prompt_speech_token.to(self.device), | |
prompt_token_len=flow_prompt_speech_token_len.to(self.device), | |
prompt_feat=prompt_speech_feat.to(self.device), | |
prompt_feat_len=prompt_speech_feat_len.to(self.device), | |
embedding=flow_embedding.to(self.device)) | |
tts_speech = self.hift.inference(mel=tts_mel).cpu() | |
torch.cuda.empty_cache() | |
return {'tts_speech': tts_speech} |